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One of the goal of random matrix theory (= RMT) was initially to de-
scribe the distribution of eigenvalues of large random matrices. They give rise
to universal laws quite different from those known for independent random
variables (like Gauss law). They appear e.g. in nuclear physics, number theory,
statistical physics, . . .

Matrix integrals have also many connections to integrable systems, alge-
braic geometry, combinatorics of surfaces, . . . In this master course, we will
present basic results and techniques in the study of random matrices, and
describe some of their surprising applications.

The prerequisites are a basic command of probability theory, linear alge-
bra, and real and complex analysis.

Among the general references on random matrix theory, I recommend:

• Random matrices, M.L. Mehta, 3rd edition, Elsevier (2004). Written by a
pioneer of random matrix theory. Accessible, rather focused on calcula-
tions and results for exactly solvable models.

• An introduction to random matrices, G.W. Anderson, A. Guionnet, O. Zei-
touni, Cambridge Studies in Advanced Mathematics 118, CUP (2010). A
level of technicity higher than Mehta. Probability oriented. Self-contained
proofs and progression.

• Topics in random matrix theory, T. Tao., Graduate Studies in Mathematics
132, AMS (2012). A series of graduate lectures, yet the exposition makes
some parts accessible to master level.

Though I do not follow a book in particular, these monographs were useful
in the preparation of this course, and I sometimes borrowed some of their
arguments.
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Further readings

The content of these references is almost not treated in this course, but they
represent a window to more recent uses of random matrix theory:

• Planar diagrams, É. Brézin, C. Itzykson, G. Parisi and J.-B. Zuber, Com-
mun. Math. Phys. 59 35–51 (1978). Physics paper (all statements therein
can easily be written to match mathematical standards of rigor), where
the combinatorial interpretation of matrix integrals as generating series
of maps was first introduced.

• The Euler characteristics of the moduli space of curves, J. Harer and D. Za-
gier, Invent. Math. 85 457–485 (1986). First appearance of matrix model
techniques in algebraic geometry. In the combinatorial part of the paper,
Harer-Zagier recursion is derived as an intermediate result – without
use of Hermite polynomials – and is solved in several ways.

• Orthogonal polynomials and random matrices : a Riemann-Hilbert approach, P.
Deift, AMS, Courant Institute of Mathematical Sciences (1998). A course
in RMT which gives a good overview of the relations between orthog-
onal polynomials and unitary invariant ensembles of random matrices.
Emphasis on asymptotic analysis.
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Figures 1,3 and 8 are reprinted with permission from APS journals: ”Readers may view, browse,
and/or download material for temporary copying purposes only, provided these uses are for
noncommercial personal purposes. Except as provided by law, this material may not be further
reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold
in whole or part, without prior written permission from the American Physical Society.”
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0. Notations and basic properties

0 Notations and basic properties

0.1 Linear algebra

• A denotes a field, most frequently R or C. MN(A) is the algebra of N ⇥ N
matrices with entries in A, with product (A · B)i,k = ÂN

j=1 Ai,jBj,k. The identity
and the zero matrix are denoted 1N and 0N , or 1 and 0 when the size is
obvious. For N even, we sometimes encounter the elementary matrix JN/2 of

size N ⇥ N, made of N/2 blocks
�

0 1
�1 0

�
along the diagonal. DN(A) is

the set of diagonal matrices, they form a commutative subalgebra of MN(A).
Unless specified otherwise, RN (resp. CN) is considered as a Euclidean space
(resp. a Hilbert space) equipped with the canonical scalar product, denoted
(·|·).
• Let A  MN(C). �  C is an eigenvalue of A if there exists v  CN \ {0}
such that Av = �v. v is then called an eigenvector, and E�(A) = Ker(A� �)
is the eigenspace of A for the eigenvalue �. The eigenvalues coincide with
the roots of the characteristic polynomial det(�� A). Therefore, any complex
matrix of size N has exactly N eigenvalues counted with multiplicity. The set
of eigenvalues of A is its spectrum, denoted Sp(A).

• AT is the transpose of A, namely (AT)i,j = Aj,i. ⇤ denotes the complex
conjugation. The adjoint is A† = (AT)⇤.

• A  MN(C) is normal if it commutes with its adjoint. A is unitary if
AA† = 1, is hermitian if A = A†, is antihermitian if A = �A†, is sym-
metric if A = AT , is antisymmetric if A = �AT , is orthogonal if AAT = 1,
is symplectic if N is even and AJN/2 AT = JN/2. We denote UN(C) the group
of unitary matrices, HN(C) the R-vector space of hermitian matrices, SN(A)
the A-vector space of symmetric matrices with entries in A, ON(A) the group
of orthogonal matrices with entries in A, SpN(A) the group of symplectic ma-
trices with entries in A (which only exists when N is even).

• A  MN(A) can be considered as endomorphism of AN . If we change
from the canonical basis to a new basis of AN by a matrix P, the new matrix
representing the endomorphism is PAP�1. We list various results of reduction
of endomorphisms. Normal matrices are characterized by the existence of U 
UN(C) and D  DN(C) such that A = UDU†, i.e. they can be diagonalized
in an orthonormal basis. Furthermore, A is hermitian iff D has real entries ;
A is antihermitian iff D has pure imaginary entries ; A is unitary iff D has
entries in U (the complex numbers of modulus 1) ; A is symmetric real if U
is orthogonal real and D is real. If A is an antisymmetric matrix, its rank r is
even, and there exists U  UN(C) such that:

A = U diag
�
a1 J1, . . . , ar/2 J1, 0, . . . , 09 87 :

n�r times

⇥
U�1

where the middle matrix is a block diagonal matrix.

• Let A be a normal matrix, f : D ⇣ C with domain of definition D  Sp A.
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0.2. Norms

If we diagonalize A = Udiag(�1, . . . ,�N)U†, we define the matrix

f (A) := Udiag
�

f (�1), . . . , f (�N)
⇥
U†,

and it does not depend on the basis of diagonalization of A.

• If A  MN(C), the eigenvalues of the hermitian matrix
 

AA† are the sin-
gular values of A.
If V is a vector space, the Grassmannian Grk(V) is the set of its k-dimensional
subspaces. If v1, . . . , vk  V, vect(v1, . . . , vk) denotes the subspace of V spanned
by the vi’s.
• A N-dimensional vector is identified with a column matrix (size N⇥ 1). The
hermitian product of two vectors v1, v2  CN can then be represented:

(v1|v2) = v†
1v2.

0.2 Norms

• The L2 norm on CN is defined by:

|a|p =
� N

Â
i=1

|ai|p
 1/p

.

In particular, |a|• = supi |ai| and |a| := |a|2 is the hermitian norm. The Hölder
inequality states for any p, q  [1, •],

1
p
+

1
q
= 1 =✓

⌥⌥⌥
N

Â
i=1

aibi

⌥⌥⌥ ⌦ |a|p|b|q.

• If A MN(C), the spectral radius is

⇥(A) = max Sp
 

AA† = sup
|v|=1

|Av|

The L2 norm is:

||A||2 =
� N

Â
i,j=1

|Ai,j|2
 1/2

=
�
Tr AA†⇥1/2

HN ⌘ RN2 can also be equipped with its L2-norm:

||A||2,RN2 =
� N

Â
i=1

A2
i,i + Â

1⌦i<j⌦N
|Ai,j|2

 1/2

We have the obvious comparisons:

||A||2 ⌦
 

2 ||A||2,RN2 , ||A||2 ⌦
 

N⇥(A), ⇥(A) ⌦ ||A||2
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0. Notations and basic properties

• If I be an ideal of C[X1, . . . , Xn], we denote:

Z(I) =
⇧

x  Cn : ⌫Q  I, Q(x) = 0
⌃

the zero locus of this ideal in Cn. The Nullstellensatz is the following state-
ment: if I is an ideal of C[X1, . . . , Xn] and P  C[X1, . . . , Xn] such that the
polynomial function P vanishes on Z(I), then there exist an integer r ↵ 1,
and two polynomials Q  I and R  C[X1, . . . , Xn], such that Pr = R · Q.

0.3 Analysis

• If A is a subset of a set X, 1A denotes the indicator function of X, which
assumes value 1 on A and 0 on X \ A.
• ⌃j,k is the Kronecker symbol, equal to 1 if j = k, to 0 otherwise.
• If (an)n and (bn)n are two sequences of complex numbers, we write an ⌥ bn
if they have the same order, i.e. if there exists c �= 0 such that an � cbn when
n ⇣ •. A similar definition can be made for functions.
• Convexity. Let V be a finite-dimensional vector space. A subset X  V is
convex if for any t  [0, 1] and x, y in X, the combination (1 � t)x + ty is
also in X. If x1, . . . , xn  V, a linear combination of the form ÂN

i=1 tixi with
t1, . . . , tN  [0, 1] and ÂN

i=1 ti = 1 is called a convex combination. A convex
combination is trivial if one of the ti’s is equal to 1. A point x in a convex subset
X  V is extreme if it cannot be written as a non-trivial convex combination of
points in X. Let X be a convex subset of V. A function f : V ⇣ R is convex if
for any t  [0, 1] and x, y  X, we have f (tx + (1� t)y) ⌦ t f (x) + (1� t) f (y).
Convex functions are continuous in the interior of their domain of definition.
Obviously, linear combinations of convex functions with positive coefficients
are convex functions. The supremum of a family of convex functions also
defines a convex function. If X is a compact convex subset of V and f : X ⇣ R

is a convex function, a useful property is that f achieves its maximum in the
set of the extreme points of X.
• L2(R) is the space of complex-valued square-integrable functions on R,
equipped with the Lebesgue measure. It is equipped with the hermitian prod-
uct:

( f |g) =
(

R

f (x)g⇤(x)dx.

If f  L2(R), its Fourier transform is f̂  L2(R) defined by:

f̂ (k) =
(

R

e2i⇣kx f (x)dx.

The Fourier transform is an isometry of L2 spaces. In particular, the scalar
product is equivalently expressed:

( f |g) =
(

R

f̂ (k)ĝ⇤(k)dk.

8



0.4. Probability

The inverse Fourier transform is given by:

f (x) =
(

R

e�2i⇣kx f̂ (k)dk.

0.4 Probability

• In this section, (W, F , P) is a probability space, and X, (Xn)n↵0 be random
variables (= r.v.) with values in a Banach space. This setting will not be made
explicit as long as there is no ambiguity from the context. (Xn)n↵0 is i.i.d if
the Xn are independent and identically distributed.
• The repartition function of a real-valued random variable X is FX(x) =
P[X ⌦ x], defined for x  R = R ⇡ {±•}. It is increasing, right-continuous
and takes the values FX(�•) = 0 and FX(•) = 1. Conversely, for any func-
tion F : R ⇣ [0, 1] that is right-continuous, increasing from FX(�•) = 0 to
F(+•) = 1, there exist a probability space and a random variable X on this
probability space such that F is the repartition function of X. We say that X
has a density if FX is differentiable almost everywhere on R. The probability
density function (= p.d.f.) F◆X(x) is often denoted ✓X(x).
• If µ1, µ2 are two probability measures on R, the convolution µ1 ⇤ µ2 is the
unique probability measure such that, if X1, X2 are independent r.v. with prob-
ability laws µ1, µ2, then X1 + X2 has probability law µ1 ⇤ µ2.
• supp µ denotes the support of a probability measure µ.
• We will meet several (in general distinct) notions of convergence of r.v. We
say that Xn converges to X when n ⇣ • : almost surely (= a.s.) if

P
�
{�  W, lim

n⇣•
Xn(�) = X(�)}

⇥
= 1;

in Lr norm for some r ↵ 1 if limn⇣• E[|Xn � X|r] = 0 ; in probability if,
for any ⌥ > 0, limn⇣• P[|Xn � X| ↵ ⌥] = 0 ; in law if limn⇣• P[Xn ⌦ x] =
P[X ⌦ x] for all points x of continuity of the right-hand side. Some notions of
convergence are stronger than others:

almost surely in probability in law

Lr, r ↵ 1

Without further assumptions, all the implications in this diagram are strict.
The L1 convergence is also called convergence in expectation.
• A useful, sufficient condition for almost sure convergence is:

⌫⌥ > 0, Â
n↵0

P
⇤
|Xn � X| ↵ ⌥

⌅
converges.

• We say that a sequence of real-valued r.v. (Xn)n↵0 has F for limit law if
there exist sequences (an)n↵0 and (bn)n↵0 such that anXn + bn converges in

9



0. Notations and basic properties

law to a random variable X with repartition function F when n ⇣ •.
• Gauss(µ, ◆2) denotes a Gaussian real-valued r.v. with variance ◆2 and mean
µ. Its p.d.f. is

✓(x) =
exp(�(x� µ)2/2◆2) 

2⇣◆2
.

Exp(µ) denotes a exponential law with mean µ. Its p.d.f is

✓(x) = 1R+(x)e�x/µ.

It is sometimes called a Poisson law. The Cauchy distribution of width b > 0
is the law of density:

✓(x) =
1

⇣(x2 + b2)
.

• Probabilistic version of the Jensen inequality: if X is a real-valued r.v. and
� : R ⇣ R a convex function, then

�(E[X]) ⌦ E[�(X)].

0.5 Topology

• If X, X◆ are open sets in a normed vector space, a function f : X ⇣ X◆ is
k-Lipschitz if

⌫x, y  X, | f (x)� f (y)| ⌦ k|x� y|

The Lipschitz constant of f is the infimum of constants k for which this in-
equality holds. We denote Lipk the set of k-Lipschitz functions, and Lipk;m its
subset of functions bounded by m > 0.
• A Polish space is a complete, separable (there exists a countable basis of
open sets), metric space X. It is also a measurable space equipped with the ◆-
algebra generated by open sets. Cb(X) denotes the vector space of real-valued,
continuous bounded functions, and Cc

b(X) its subspace of functions with com-
pact support.
• If X is a Polish space, we denote M1(X) the set of probability measures on
X. The weak topology is defined by the basis of open sets

Uf ,⌥,x =
1

µ M1(X),
⌥⌥⌥
(

X

f dµ� t
⌥⌥⌥ < �

2
f  Cb(X), ⌥ > 0, t  R

The vague topology on M1(X) is generated by the open sets Uf ,⌥,x with f 
Cc

b(X). In absence of precision, M1(X) is equipped with the weak topology.
• M1(X) is a Polish space, which is compact iff X is compact. If Y is a count-
able and dense subset of X, then the set of probability measures on X that are
supported on Y is dense in M1(X).
• A probability measure µ  M1(X) is tight if forall ⌥ > 0, there exists a
compact K⌥  X such that µ(X \ K�) < ⌥. A subset M  M1(X) is tight if
every µ  M is tight, and the compact K� can be chosen independently of
µ. Since X is a Polish space, every probability measure is tight. Prokhorov
theorem states that a subset M is tight iff M is compact.

10



0.6. Complex analysis

• The Vasershtein distance is defined by:

⌫µ1, µ2 M1(X), d(µ1, µ2) = sup
fLipb;1
0⌦b⌦1

⌥⌥⌥
(

f (dµ1 � dµ2)
⌥⌥⌥.

It is compatible with the weak topology.
• A sub-probability measure on X is a positive measure of total mass ⌦ 1.
Helly’s selection theorem states that any sequence of probability measures
on a Polish space X admits a subsequence that converges weakly to a sub-
probability measure.
• If f : [a, b]⇣ C, its total variation is defined by:

TV[ f ] = lim
n⇣•

sup
a⌦a1⌦···⌦<an⌦b

a0=a, an+1=b

n

Â
i=0

| f (ai+1)� f (ai)|.

• If X is a real-valued r.v., M[X] is a median of X, i.e. any real number such
that:

P[X < M[X]] ⌦ 1/2, P[X > M[X]] ⌦ 1/2.

0.6 Complex analysis

• An entire function is a holomorphic function on C. Liouville theorem states
that bounded entire functions are constants, and entire functions bounded
uniformly by a polynomial are polynomials.
• Let U be an open subset of C. Montel theorem states that, from any bounded
sequence ( fn)n↵1 of holomorphic functions, one can extract a subsequence
that converges uniformly on any compact of U to a holomorphic function f .

0.7 Miscellaneous

• SN denotes the symmetric group.
• Ja, bK the set of integers {a, a + 1, . . . , b� 1, b}.
• ⌧x� denotes the integer part of x, i.e. the unique integer n such that n ⌦ x <
n + 1.

0.8 Special functions and identities

• The Gamma function can be defined as the unique function G : R⇤+ ⇣ R

such that G(n + 1) = n! for any integer n ↵ 0, G(s + 1) = sG(s) for any s  R,
and ln G is convex. For s > 0, it admits the integral representation:

G(s) =
•(

0

ts�1 e�tdt,

and the special values G(1/2) = 2
& •

0 e�u2du =
 
⇣. It can be analytically

continued as a holomorphic function in C \ Z, with simple poles at the non-

11



0. Notations and basic properties

positive integers. It satisfies the reflection formula:

G(s)G(1� s) =
⇣

sin⇣s

For any m ↵ 0, it admits an asymptotic expansion when s ⇣ • away from
the negative real axis:

ln G(s + 1) = s ln s� s +
ln(2⇣s)

2
+

m

Â
⇥=1

B2⇥
2⇥(2⇥� 1)s2⇥�1 + O(s�(2m+1)),

where the Bm are the Bernoulli numbers defined by the Taylor expansion at
x = 0:

x
ex � 1

= Â
m↵0

Bm
m!

xm, B1 = �1
2

, B2 =
1
6

, B4 = � 1
30

, . . .

The B2m+1 vanish for m ↵ 1, and the sign of B2m is (�1)m.

• The Riemann Zeta function is initially defined for Re s > 1 by the convergent
series:

⇠(s) = Â
n↵1

1
ns .

It is of central importance in number theory since it is also given by the infinite
product over all primes:

⇠(s) = ’
p

1
1� p�s

Using Cauchy residue formula, the series can be represented as:

⇠(s) = e�i⇣sG(1� s)
% dt

2i⇣
ts�1

et � 1
,

where the contour surrounds the positive real axis including 0 from +•+ i0+

to +• � i0+. By moving the contour and using the analytic properties of
the Gamma function, this formula defines ⇠ as a holomorphic function on
C \ {1}, with a simple pole at s = 1. The Zeta function, as a particular case of
L-functions in number theory, satisfy a functional relation:

,⇠(s) = ,⇠(1� s), ,⇠(s) = ⇣�s/2G(s/2)⇠(s).

The special values of the zeta functions for integers are:

⌫n ↵ 1, ⇠(�n) = (�1)n Bn+1
n + 1

, ⇠(2n) =
(�1)n+1B2n ⇣

2n

2 · (2n)!
.

Since G(s/2) has poles when s is a negative even integer, while the right-hand
side remains finite, ⇠(s) has a simple zero when s is an even negative integer.
These are the trivial zeroes. As an entire function, the zeta function has at most
countably many other zeroes. The Riemann Hypothesis (RH) claims that all
the non-trivial zeroes are located on the critical line Re s = 1/2. By symmetry,
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0.8. Special functions and identities

1/2+ it is a zero iff 1/2� it by symmetry. So, one can consider only the zeroes
with positive imaginary part, and order them sn = 1/2 + itn, with strictly
increasing tn. Knowing the location of the zeroes of Riemann Zeta would give
fine information on the distribution of prime numbers. Hardy (1914) proved
infinitely many zeroes lie on the critical line, and Conrey (1989) shows that
more than 4/10 of the zeroes lie on the critical line.

13



1. Introduction

1 Introduction

1.1 Independent r.v. versus eigenvalues
Lecture 1 (1h30)
October 6th, 2014 If A is a N⇥N complex random matrix with random entries, its N eigenvalues

are random. Even if the entries are chosen independent, the eigenvalues will
be strongly correlated. The essential feature of the sequence of eigenvalues
�1, . . . ,�N of random matrices is that they repel each other (this statement
will be made precise throughout the course). Their properties – and the limit
laws appearing in the large N limit – are therefore very different from those
relevant in the world of independent r.v.

The limit laws one computes in RMT are found in many problems in
physics and mathematics, a priori relatively far from the area of random ma-
trices: we will mention in this introduction nuclear physics, statistical physics,
quantum chaos, and number theory. A property is said to be universal1 if it
holds in a much more general class of models than the one it was originally
found. To a large extent, this is the case for local limit laws of random ma-
trices, i.e. those concerning the distribution of �i’s in small regions where we
expect only finitely many eigenvalues when N ⇣ •. The global limit laws,
like the spectral density of the fluctuations of linear statistics, in general are
more model-sensitive.

In this introduction, we will present small computations, experimental
data and big theorems for illustration.

1.2 Our three preferred matrix ensembles

• (Real) Wigner matrices. Let (Xi)1⌦i⌦N and (Yi,j)1⌦i<j⌦N be two i.i.d se-
quences of r.v. with zero mean, E[Y2

1,2] = 1, and assume all the moments of
X1 and Y1,2 are finite. We construct a SN(R)-valued r.v. by setting:

(MN)i,j =

�
 

�

N�1/2 Yi,j i < j
N�1/2Yj,i i > j
N�1/2Xi i = j

.

MN is called a real Wigner matrix2. This is the topic of Chapter 3.
• Invariant matrix ensembles. Let V be a polynomial with real coefficients,
such that x �⇣ e�V(x) is integrable on R, called the potential. The R-vector
spaces HN,⌅ of matrices listed in the table have a canonical basis, and we de-
note dM the product of Lebesgue measure of the coefficients of decomposition
in this canonical basis. For instance, for symmetric matrices

dM =
N

’
i=1

dMi,i ’
1⌦i<j⌦N

dMi,j.

1The notion of universality is thus relative to the historical development of knowledge and the
points of view on this knowledge.

2The rescaling 1/
 

N will ensure that the eigenvalues are typically bounded when N ⇣ •. For
now, this can be seen heuristically: with the given definition, E[Tr M2

N ] is of order N, but Tr[M2
N ]

is also the sum of the N squared eigenvalues. Unless a small fraction of eigenvalues dominate the
others, they all must be typically of order 1.

14



1.3. The framework of quantum mechanics

The invariant matrix ensembles are defined by considering a HN,⌅-valued r.v.
drawn from the probability measure:

(1)

Z�1
N,⌅ dM exp

�
� N⌅

2
Tr V(M)

 
, ZN,⌅ =

(

HN,⌅

dM exp
�
� N⌅

2
Tr V(M)

 
.

This measure is invariant under conjugation M ⇣ UMU† by a matrix U in
the group GN,⌅ indicated in the table. Invariant ensembles are exactly solvable:
many observables can be computed in terms of special functions. Apart from
probabilistic techniques, one can use powerful techniques based on orthogonal
polynomials (Chapter 6) and integrable PDEs (Chapter 9) for their study.

⌅ HN,⌅ dimR HN,⌅ GN,⌅
1 N ⇥ N real symmetric N(N + 1)/2 ON(R)
2 N ⇥ N hermitian N2 UN(C)

4

N ⇥ N quaternionic self-dual
⌘ 2N ⇥ 2N complex M’s such that

JN M = MT JN and JN M = M⇤ JN

N(2N � 1) Sp(2N, R)

• Gaussian ⌅ ensembles. Consider an invariant ensemble with quadratic po-
tential V(M) = M2/2. Then, all the R-linearly independent entries of M are
independent Gaussian r.v with zero mean. In the case ⌅ = 1, Var(Mi,i) = 2/N
and Var(Mi,j) = 1/N for i �= j, so M is a particular case of real Wigner matrix.
In the case ⌅ = 2, Var(Mi,i) = 1/N and Var(Mi,j) = 1/(2N) for i �= j. These
ensembles are denoted G⌅E, or more specifically GOE (Gaussian orthogonal
ensemble) for ⌅ = 1, GUE (Gaussian unitary ensemble) for ⌅ = 2. Later we
will define as well a ”GSE” (Gaussian symplectic ensemble) corresponding to
⌅ = 4. The Gaussian ensembles form the intersection between Wigner ma-
trices and invariant ensembles. They are the easiest to compute with: in the
framework of exactly solvable models, the special functions involved are re-
lated to the Hermite polynomials and their asymptotics (Chapter 6).

1.3 The framework of quantum mechanics

Quantum mechanics is a large source of (random) matrices. It may be worth
to review its basic language so as to understand the motivations coming from
physics.

Summary

• A system in quantum mechanics is described by a Hilbert space V , that is a
C-vector space equipped with a definite positive hermitian product, such that
V is complete for the topology induced by the hermitian norm |v| =

3
(v|v).

If A is an endomorphism of V , its adjoint A† is the unique endomorphism
satisfying (v|A†w) = (w|Av) for all v, w  V . We say that A is self-adjoint
if A = A†, and that A is unitary if A preserves the hermitian product, i.e.

15



1. Introduction

AA† = A† A = 1. There are several notions of spectrum if dim V is infinite,
but we do not need to enter into details here. Let us just say that for compact
self-adjoint operators A, the spectral decomposition theorem guarantees that
V is the Hilbert sum of the eigenspaces – defined as in finite dimension – of
A.
• Vectors of unit length in V describe the states of the system, and dim V
– finite or infinite – is the number of degrees of freedom. The prediction of
quantum mechanics of the result of physical measures on the system is in
general of probabilistic nature. A physical observable (like the position, the
impulsion, the angular momentum, the polarization ...) is represented by a
(hopefully compact) self-adjoint operator A, its spectrum – defined as in finite
dimension – represents the possible values obtained in a physical measure-
ment. If the system is in a state v  V , the probability to observe the result
a  Sp(A) in an experiment measuring A is |⇣Ea(A)(v)|2 (Born rule postu-
late). Here, ⇣E denotes the orthogonal projection on the subspace E  V .
When v is an eigenvector of A, this probability is 0 or 1 and we say that
the physical observables assumes a definite value (the eigenvalue a such that
v  Ea(A)) on v. A commutative subalgebra of compact self-adjoint operators
on V can be diagonalized in the same basis. The physical observables forming
a commutative algebra can simultaneously assume a definite value, whereas
two observables represented by non-commuting operators cannot (Heisenberg
uncertainty principle).
• If the system is in a state v0  V at time t = 0, its evolution is characterized
by prescribing a self-adjoint H operator called the hamiltonian, and solving
the Schrödinger equation:

ih̄⇡tvt = Hvt.

Understanding the dynamics of a quantum system thus amounts to diagonal-
izing the hamiltonian. The eigenvalues of H are called energy levels3.

Quantum symmetries

• A set of physical observables A is complete if there exists a finite or count-
able subset of {Ai i  I} of A generating a commutative subalgebra, such
that for any (ai)  ’i Sp Ai, ⇢iI Eai (Ai) is either 0 or 1-dimensional. A quan-
tum system in which there exists a complete set of physical observables is said
completely integrable. Two systems that cannot be distinguished by physical
measurements are considered as equivalent. One can show that, in a com-
pletely integrable system, a system in a state v along with physical observ-
ables represented by operators A is equivalent to a system in a state v◆ with
physical observables represented by operators A◆, iff there exists an unitary
operator U such that v◆ = Uv and A◆ = UAU�1. In particular, if one wishes
to keep the same representation for physical observables, we are restricted to
take U = u · id, with u  U, i.e. two states are equivalent iff they are colinear.
This motivates to consider only completely integrable system in the following.
• If a quantum system has a symmetry group G, it is implemented as an action
of the group G on states v ⇣ v◆ and physical observables A ⇣ A◆ that gives

3To be fair, the eigenspaces should be considered as the ”levels” in this picture.
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1.3. The framework of quantum mechanics

an equivalent system. If one assumes that it is linearly realized, this means the
existence of a representation of G by unitary operators K, with v◆ = Kv and
A◆ = KAK�1. This symmetry is preserved by evolution under the Schrödinger
equation when all K’s commute with H. If a symmetry group G is a Lie group,
it induces at the infinitesimal level a representation of its Lie algebra that also
commute with K. We can also speak of a (Lie) algebra of symmetries.

• For instance, rotational invariance of a quantum system implies the existence
of 3 self-adjoint operators l1, l2, l3 commuting with H, and having commuta-
tion relations [li, lj] = lk for any (i, j, k) which is a cyclic permutation of (1, 2, 3).
The angular momentum is the operator l2 = l21 + l22 + l23, and L = �l2, l1� form
a maximal commutative subalgebra of �l1, l2, l3�. It can be used to split V into
eigenspaces V⇥2,⇥1

for L : since [L , H] = 0, H leaves those eigenspaces stable,
and we are left with the problem of diagonalizing H in the smaller Hilbert
spaces V⇥2,⇥1

.

• The eigenvalues for a maximal commutative subalgebra of the algebra of op-
erators generated by elements of the symmetry group are called the quantum
numbers. In a quantum system which only has rotational invariance, these
are (for example) ⇥2 and ⇥1. To summarize, the eigenvalues and eigenvectors
of H behave independently for different spaces attached to a different set of
quantum numbers.

• Spin. Representations of the Lie algebra are in correspondence – by the
exponential map – with representation of the universal cover of the corre-
sponding Lie group. The universal cover of SO(3) is SU(2). There is a degree
2 covering map ⇣ : SU(2) ⇣ SO(3), and ⇣�1(id) = {±id}. The irreducible
unitary representations of SU(2) are finite dimensional (since SU(2) is com-
pact). They are characterized by l  N/2, and the dimension over C of the
corresponding representation Rl is 2l + 1. The representations of SU(2) with
half-integer l induce projective representations of SO(3): performing continu-
ously a rotation from angle 0 to angle 2⇣ realizes the transformation v ⇣ �v.
Since the phase of a state gives an equivalent state, one could think this has
no physical effect. However, if two states – described in two different Hilbert
spaces – are put in interaction, their relative phase will matter, so this minus
sign does affect physics. If the quantum system enjoys the rotational invari-
ance, V splits into irreducible representations of SU(2), which may include
some summands with half-integer4 spin. Even in systems which do not have
a full rotational invariance, the angular momentum l2 very often commutes
with H, so the notion of spin is defined. Particles described by Rl are called
fermions if l is half-integer (electrons, protons and neutrons have spin 1/2),
bosons if l is integer (photons have spin 1, the Higgs boson has spin 0).

•Parity. When the operation of central symmetry (i.e. reverting all coordinates
of a particle simultaneously) commutes with the hamiltonian, its eigenvalue
±1 is a quantum number called the parity.

4A half-integer is conventionally defined as 1/2 times an odd integer.
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1. Introduction

Time reversal

• We consider V = CN in this section. Let C denote the anti-linear operation
consisting in taking the complex conjugate of the vectors to its right. Taking
the complex conjugate of the Schrödinger equation, we find:

ih̄⇡tvt = Hvt, �ih̄⇡tCvt = H⇤Cvt.

The quantum system is invariant under time reversal t ⇣ �t when there exists
a unitary matrix K such that KH⇤KT = H. Indeed, if this condition is enforced,
the system after time reversal is described by states v◆t = KCvt and physical
observables – including the hamiltonian – A◆ = KAK�1, and it is equivalent
to vt. Since time reversal is involutive, we must have A◆◆ = A, and thus by
equivalence principles v◆◆ = ⇤Kv for some ⇤K  U and for any v  V . This
imposes (KC)2 = ⇤K, and since K is unitary and C is the complex conjugation,
this implies K = ⇤KKT . Since the transpose is involutive, we deduce ⇤K = ±1.
The two cases are possible.
• If ⇤K = 1, we can fix K = 1 by an equivalence transformation, i.e. the
time reversed state is v◆t = Cvt. The remaining equivalence transformations
that preserve this choice are the left multiplication of vectors (and conjugation
of physical observables) by real unitary matrices, i.e. orthogonal matrices. In
other words, the residual equivalence group is ON(R). One can argue this
occurs for integer spin or systems with rotational invariance.
• If ⇤K = �1, the dimension N must be even and we can reduce to K =
JN/2 by an equivalence transformation, i.e. the time reversed state is v◆t =
JN/2Cvt. The remaining equivalence transformations that preserve this choice
are left-multiplication of vectors (and conjugation of physical observables) by
symplectic matrices. The residual equivalence group is SpN(R). In that case,
the eigenvalues of H must have even multiplicities. One can argue this occur
for half-integer spin without full rotational invariance.

1.4 From atomic levels to heavy nuclei resonances

• As an example of quantum system, consider V = L2(R3) with hamiltonian:

H1 = � h̄2

2m
D⇤x �

Ze2

4⇣⌥0 |⇤x|
.

where ⇤x is the coordinate in R3, |⇤x| the distance to the origin, and D⇤x the
Laplacian in these coordinates. It describes the electrostatic interaction be-
tween an electron of mass m and charge �e and a nuclei of charge Ze in the
referential of center of mass (Bohr model). h̄ is the Planck constant, ⌥0 the di-
electric constant of the void. The hamiltonian can be diagonalized, and all the
eigenvalues are simple (therefore the system is completely integrable):

�n = �Z2 R•
n2 , n  N⇤, R• =

me4

32h̄2⌥2
0

.
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1.5. Local spacings

R• is the Rydberg constant, its value is approximately 13, 6 eV. For Z = 1, this
is a good model for the hydrogen atom. n = 1 has the lowest energy
• For Z independent electrons attracted by a nuclei of charge Ze, the Hilbert
space is V = L2(R3Z), the hamiltonian HZ = Âi H(i)

1 where H(i)
1 is a copy

of the hamiltonian H1 acting on the i-th vector of coordinates in the product
R3Z = ’Z

i=1 R3. Its eigenvalues are

�n1,...,nZ = �Z2R•

� Z

Â
i=1

1
n2

i

 
, n1, . . . , nZ  N⇤.

The picture is that one places each of the Z electrons in the energy levels
of H1. Including some selection rules constraining the way the levels can be
filled, and renormalizing ⌥0, gives already a good model for the atomic nuclei
with Z . 20. For heavier nuclei, the interactions between electrons play an
important role, and other terms should be added in the hamiltonian, which
cannot be (even approximately) diagonalized easily.
• There exist similar models describing energy levels for protons and neutrons
inside nuclei, but they are only predictive for light nuclei5. To describe nuclear
reactions, one needs to understand how ”free” neutrons interact with target
heavy nuclei. For certain energies �n of the incoming neutron, resonance oc-
cur: a quasi-bound state neutron-nuclei will form with a lifetime  n much
larger than the duration of collision. The data of (En + i n)n is important, but
since the distribution of energy of the incoming neutrons in a nuclear reac-
tion is wide, their overall statistical properties are more important than their
precise individual values. Finding �n is similar to diagonalizing the hamilto-
nian of interactions, which is non self-adjoint: complex eigenvalues �n + ih̄/ n
with  n > 0 being responsible – as seen from the Schrödinger equation – for
the decay of the bound state. This picture was well-established in the 30s,
but the interactions are so complicated that there is no dream of diagonal-
izing (even approximately) a realistic hamiltonian. The theoretical physicist
Wigner (1951) proposed that, the hamiltonian being so complicated, some sta-
tistical properties of its spectrum may well be the same as that of a random
one in an ensemble respecting the symmetries of the problem. A hamiltonian
is nothing but a large matrix, and it can be argued that rotational invariance
and invariance under time reversal of nuclear reactions forces to consider only
symmetric matrices. He introduced the very simple – and not at all realistic for
nuclear physics – Gaussian ensembles (see § 1.2) of N⇥N random matrices in
which he could make computations, and he argued that the local properties of
the eigenvalues in those ensembles are actually universal, so that they should
be compared to statistical properties of the resonance energies.

1.5 Local spacings

• Local spacings for i.i.d. Let X1, . . . , XN be i.i.d. sequence of real valued r.v.,
and assume X1 has a density. We denote Wx,s the event ”the interval [x, x + s]

5This important sentence was confusedly omitted during the lecture: nuclear reactions do not
involve electrons !
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1. Introduction

contains none of the Xi’s”.

P[Wx,s] =
N

Â
k=0

⌦
N
k

↵
FX(x)(1�FX(x + s))N�k =

⇤
1� (FX(x + s)�FX(x))

⌅N .

When N ⇣ •, this probability will tend to 0 or 1, unless (FX(x + s)�FX(x))
is of order 1/N. So, if we choose s = ŝ/N, we have FX(x + ŝ/N)�FX(x) �
ŝ✓X(x)/N, and:

lim
N⇣•

P[Wx,ŝ/N ] = exp(�✓X(x) ŝ).

So, the local spacings of i.i.d around the point x follow a Poisson law with
mean ✓X(x).

• Wigner surmise. Pushing further his idea, Wigner tried to guess the local
spacings of heavy nuclei resonances by comparing it to the spacings in the
2⇥ 2 Gaussian ensembles ! Accidentally, the N = 2 result approximates very
well the local spacing distribution of the Gaussian ensembles in the limit N ⇣
•. The exact result for any N was found by Mehta and can be computed from
the results of Chapter 6 and 9. We will do the N = 2 computation in the G⌅E,
relying on the result established later (Theorem 4.3) for the p.d.f of the two
eigenvalues (�1,�2):

✓(�1,�2) =
1

Z⌅(◆)
|�1 � �2|⌅ exp

�
�
�2

1 + �2
2

2◆2

 
.

The normalization constant Z⌅(◆) ensures that
&

R2 ✓(�1,�2)d�1d�2 = 1. We
compute it by performing the change of variables (x1, x2) = (�1 +�2,�1��2):

Z⌅(◆) =
(

R2

|x2|⌅ exp
�
�

x2
1 + x2

2
4◆2

 dx1dx2
2

= (2◆)⇣1/2
•(

0

x⌅2 exp
�
� x2

2
4◆2

 
dx2

= (2◆)⇣1/2 · (2◆)
⌅+1

2

•(

0

t⌅/2�1/2 e�tdt =
 
⇣

2
(2◆)⌅+2 G(⌅/2 + 1/2).

The spacing is the r.v. S = |�1 � �2|, and its p.d.f is:

✓S(s) = 2
•(

0

✓(�1 + s,�1)d�1 =
(2◆)

 
⇣

Z⌅(◆)
s⌅ exp

�
� s2

4◆2

 
,

as follows from the evaluation of the Gaussian integral. The mean spacing is:

E[S] =
•(

0

s✓S(s)ds =
•(

0

(2◆)⌅+1 dt
2

t⌅/2 e�t =
(2◆)

 
⇣

Z⌅(◆)
G(⌅/2 + 1)(2◆)⌅+2.
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1.6. Zeroes of the Riemann zeta function and GUE

Imposing the mean spacing fixes the value of the parameter ◆:

E[S] = 1 =✓ ◆ = ◆⌅ :=
G(⌅/2 + 1/2)
2 G(⌅/2 + 1)

.

The corresponding distribution is Wigner surmise:

✓S(s) = C⌅ s⌅ exp(�a⌅s2),

and the values of the constants is listed in the Table below.

symmetry class ⌅ a⌅ C⌅

GOE 1 ⇣/4 ⇣/2
GUE 2 4/⇣ 32/⇣2

GSE 4 64/9⇣ 262144/729⇣3

• Comparison to nuclear physics. Nuclear reactions have a time reversal and
a rotation invariance. Therefore, the residual equivalence group is O(N), and
the proposition of Wigner was actually to compare the spacings of the reso-
nance energies to those of the eigenvalues of the GOE. This must be done with
some care : (1) as we argued in § 1.3, resonance energies associated to different
quantum numbers (here: total angular momentum ⇥ ; one of the projection of
the angular momentum, say ⇥1 ; and parity p) behave independently ; (2) the
average spacing clearly differs between samples, so at least one should first
match the mean spacing by rescaling experimental data and fixing ◆ := ◆⌅.
Porter and Rosenzweig (1960) recorded the statistics of consecutive spacings in
large sequences of resonance energies with fixed quantum numbers and odd
parity. They grouped nuclei in 3 groups (small, medium, and large number of
protons), and within each of these groups, built a histogram by averaging the
statistics of spacings over quantum numbers and nuclei species (Figure 1). As
the size of the nuclei grow, one observes a transition between Poisson statis-
tics – that would occur for i.i.d – and GOE statistics of spacings. The Wigner
surmise gives a good prediction for heavy nuclei.
• Quantum chaos. Bohigas, Giannoni and Schmit (1980) conjectured that the
eigenvalues of the Laplacian in a generic6

2d domain have the same local
statistics as the eigenvalues of the GOE. Their conjecture was supported by
numerical experiments, showing e.g. a good agreement between the Wigner
surmise and the distribution of spacings (Figure 2).

1.6 Zeroes of the Riemann zeta function and GUE
Lecture 2 (1h30)
October 7th, 2014Let 1/2 + itn the zeroes of Riemann zeta function on the critical line, ordered

so that tn > 0 increases with n. Define:

FT(k) =
2⇣

T ln T Â
0⌦tn ,tm⌦T

�(tn � tm) exp(ik ln T(tn � tm)), �(x) =
4

4 + x2 .

6To my knowledge, the correct assumption for the result to hold is still a matter of discussion
among mathematicians.
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Figure 1: Reprinted with permission from C.E. Porter and N. Rosenzweig, Phys.
Rev. 120 (1960), 1968-1714 © APS. The histogram describe averages of spacing
statistics – normalized by mean spacing – within 3 groups of nuclei: 21Sc to
28Ni in the first group, 39Y to 46Pd in the second group, 72H f from 77Ir for the
third group. The dashed curve is the Wigner surmise for GOE, the plain line
curve on panel (a) is the Poisson law for i.i.d. 43Tc is missing in the second
group, because it is an artificial element.

The function �(x) is just here to regularize the sum that we want to study
when T ⇣ •. Assuming Riemann Hypothesis, Montgomery (1970) proved:

⌫k  [�1, 1], lim
T⇣+•

FT(k) = |k|
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1.6. Zeroes of the Riemann zeta function and GUE

Figure 2: © Reprinted with permission from O. Bohigas, M.J. Giannoni and
C. Schmit, Phys. Rev. Lett. 52 (1984) 1-4 © APS. Sinai billiard is the 2d domain
on the top right-hand corner. The histogram is the statistics of spacings –
normalized by mean spacings – in a large sequence of eigenvalues, and it is
compared to Wigner surmise for GOE, and to Poisson law for i.i.d.

uniformly, and conjectured that

⌫k  R\]� 1, 1[, lim
T⇣+•

FT(k) = 1

uniformly on any compact. The conjecture can be reformulated as:

⌫k  R, lim
T⇣+•

FT(k) = F•(k) := 1 + ⌃k,0 � (1� |k|)1[�1,1](k).

By convolution of FT(k) with a continuous function f̂ with compact support
(or with support in [�1, 1]), Montgomery’s conjecture (or theorem) gives ac-
cess to statistics of the zeroes of Riemann zeta function probed by the inverse
Fourier transform f of f̂ . Indeed:

(

R

F•(k) f̂ (�k)dk = f (0) + f̂ (0)�
1(

�1

(1� |k|) f̂ (�k).
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The last term can be recast in real space by computing the inverse Fourier
transform:

1(

�1

(1� |k|)e�2i⇣kr =

1(

0

2(1� k) cos(2⇣kr) =
1(

0

2k
2⇣r

sin(2⇣kr)

=
� sin(⇣r)

⇣r

 2
.(2)

Therefore:
(

R

F•(k) f̂ (�k)dk = f (0) +
(

R

f (r)
-
1�
� sin⇣r

⇣r

 2.
dr.

Besides:
(

R

FT(k) f̂ (�k)dk =
2⇣

T ln T Â
0⌦tn ,tm⌦T

�(tn � tm) f
� ln T(tn � tm)

2⇣

 
.

We deduce from the uniform convergence in Montgomery’s conjecture

lim
T⇣•

2⇣
T ln T Â

0⌦tn ,tm⌦T
�(tn � tm) f

� ln T(tn � tm)
2⇣

 

= f (0) +
(

R

f (r)
-
1�
� sin⇣r

⇣r

 2.
dr

Dyson pointed out to Montgomery that the right-hand side is the local cor-
relation function of pairs of eigenvalues in the GUE, also called sine law (see
Proposition 8.13). This conjecture was later supported by numerical experi-
ments of Odlyzko (e.g. Figure 3), and extended to many-points correlations.
The Hilbert-Pólya philosophy – dating back from the 1910s – proposes a rea-
son for the zeroes of the zeta function to be aligned the critical line: it would
be so if they were eigenvalues of 1/2 + iZ where Z is a self-adjoint operator.
Montgomery’s result gave a new impetus to this idea, and though such an op-
erator has not been constructed so far, many intuitions coming from random
matrix theory results have been imported in number theory to guess prop-
erties of L-functions, which sometimes have been later proved independently
(see the review of Katz and Sarnak, and the works of Keating).

1.7 Extreme value statistics for i.i.d.

For i.i.d.’s, the following result was proved by Gnedenko (1943) and in more
restricted generality by Fisher and Tippett (1928):

1.1 theorem. Consider (Xi)1⌦i⌦N i.i.d sequence of real-valued r.v., and let MN =
maxi Xi its maximum. If (MN)N↵1 has a limit law, then its repartition function is –
up to affine transformation – of the form:

• (Gumbel) FG(t) = exp(� exp(�t)).
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1.7. Extreme value statistics for i.i.d.

Figure 3: Black dots form a properly renormalized histogram of the pair cor-
relation of a sequence of 106 consecutive zeroes of the zeta function, around
the 1020-th one (data courtesy of A. Odlyzko, graph courtesy of J.M. Stéphan).
The red curve is the sine law found in the GUE.

• (Fréchet) FF,⇤(t) = exp(�t�⇤)1R+(t) for some ⇤ > 0.

• (Weibull) FW,⇤(t) = exp(�(�t)⇤)1R�(t) for some ⇤ > 0.

Remark that it is equally relevant for the limit law of the minimum, upon
changing Xi to �Xi.

We will prove a weaker version of this result, which is enough for practical
applications. We assume that X1 has a continuous density, and write G(x) =
P[X ↵ x]. We have:

P[MN ⌦ x] = P[X1, . . . , XN ⌦ x] =
N

’
i=1

P[Xi ⌦ x] = (1� G(x))N .

This probability tends to 0 or 1 unless we set x = aN + bNt with aN and bN
chosen such that G(aN + bNt)/N ⇣ G⇤(t) is bounded and non-zero. When
it is the case, the reduced r.v. M̂N = (MN � aN)/bN converges in law to M̂•
with repartition function:

P[M̂• ⌦ t] = exp(�G⇤(t)).

We can for instance define aN uniquely by the condition G(aN) = 1/N. Then,
the choice of bN = |(ln G)◆(aN)|�1 guarantees that G⇤(t) will vary at order
O(1) when we shift t by order O(1). We say that MN is of order aN , with
fluctuations of order bN . We will establish Theorem 1.1 for three types of
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1. Introduction

asymptotic behaviors of the repartition function of X1:
• Exponential tails. G(x) ⌥ x⇤ exp(�⌅x ) for some ⇤  R and ⌅, > 0.
This is e.g. the case for waiting times in systems without memory (radioactive
emission), for rarely occurring events (Poisson law), high level sport perfor-
mances, . . . We find

aN ⌥ (ln N/⌅)1/ , bN ⌥ a1� 
N � aN ,

and we compute:

G(aN + bNt)
G(aN)

� exp(�⌅ a �1
N bNt) � exp(�ct), N ⇣ •.

for some constant c > 0. Therefore, the fluctuations of the maximum follow
– up to an affine transformation – a Gumbel law. It is remarkable that the
distribution of the maximum in that case is spiked around aN ✏ 1, with
a much smaller width bN ⌥ a1� 

N � aN . The Gumbel law is e.g. used by
insurance companies to estimate their maximal loss if they have to backup
customers for rare damages (like serious illnesses or natural catastrophe).

!! !" !# !$ $ # "

%&'

%&$

%&(

Figure 4: P.d.f. of the Gumbel law: F◆W(t). It has exponential tails at t ⇣ +•,
and doubly-exponential tails on at t ⇣ �•.

• Heavy tails. G(x) decays like a power law: G(x) ⌥ x�⇤ for some ⇤ > 0.
This is e.g. the case for the energy released in earthquakes or in other natural
catastrophes, or the connectivity of a node in a social network or on Internet.
We find:

aN ⌥ bN ⌥ N⇤,

and we compute:

G(aN + bNt)
G(aN)

� (1 + bNt/aN)
�⇤ � (1 + ct)�⇤ N ⇣ •.

for some constant c > 0. Therefore, the fluctuations of the maximum follow –
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1.8. Extreme value statistics for G⌅E

up to an affine transformation – a Fréchet law. Here, it is remarkable that the
center of the distribution aN and the width bN are of the same order.

!"# $"! $"# %"! %"# &"!

!"$

!"%

!"&

!"'

Figure 5: P.d.f. of the Fréchet law: F◆W,⇤(t) for ⇤ = 0.5 (blue) and 2 (orange). It
has exponential tails at t ⇣ +•, and vanishes non-analyticity at t ⇣ 0+.

• Bounded r.v. X1 is bounded by x0, and when x ⇣ x�0 , we have G(x) ⌥
(x0 � x)⇤ for some ⇤ > 0. This is e.g. the case in trading games, where the
losses an individual may take are (usually) bounded by below. We find:

x0 � aN ⌥ bN ⌥ N�⇤,

and we compute:

G(aN + bNt)
G(aN)

�
�

1� bNt
x0 � aN

 ⇤
� (1� ct)�⇤, N ⇣ •.

for some constant c > 0. There, the fluctuations of the maximum follow –
up to an affine transformation – a Weibull law. It is not surprising that the
maximum is close to (and smaller than) x0, with fluctuations of order bN � 1
when the number N of samples becomes large.
• Comment. The energy E released by an earthquake has a heavy tail dis-
tribution for an exponent ⇤ that can be measured empirically, and thus the
maximum energy of a large N of independent earthquakes follow a Fréchet
law with center and width ⌥ N⇤. Yet, the human and material damage an
earthquake causes is better accounted by its magnitude. The magnitude is
proportional to ln E, which has an exponential tail with  := 1 and ⌅ := ⇤,
hence its maximum is typically of order ⇤ ln N, with fluctuations of order ⌥ 1
described by a Gumbel law.

1.8 Extreme value statistics for G⌅E

The situation is very different for random matrices. The maximum eigenvalue
of a matrix of size N ⇣ • in the G⌅E converges to a deterministic constant,
and its fluctuations are of order N�2/3. The limit law was elucidated by Tracy
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Figure 6: P.d.f. of the Weibull law: F◆W,⇤(t) for ⇤ = 0.25 (blue), 1 (orange) and
4 (green). It has exponential tails at t ⇣ �•. At t ⇣ 0�: if ⇤ > 1, it vanishes
diverges a power law ; at ⇤ > 1, it vanishes like a power law. At ⇤ = 1, this is
the exponential distribution up to reflection t ⇣ �t.

and Widom (in 1993 for ⌅ = 2, in 1995 for ⌅ = 1, 4), and it involves new
special functions. Consider a solution of the Painlevé II (PII) equation

q◆◆(s) = 2q3(s) + sq(s)

that matches the growth conditions:

q(s) �
s⇣�•

 
�s/2, q(s) �

s⇣+•

1
2
 
⇣ s1/4 exp

�
� 2s3/2

3

 
.

PII is an example of non-linear integrable ODE – the meaning of integrability
will be explained later in the course (Chapter 9). Flaschka and Newell (1980)
have shown existence and uniqueness of q(s), it is called the Hastings-McLeod
solution of PII. Then, define:

E(s) = exp
�
� 1

2

•(

s

q(t)dt
 

H(s) = exp
�
� 1

2

•(

s

q◆(t)2 � tq2(t)� q4(t)
 

1.2 theorem. * In the G⌅E,

lim
N⇣•

PN,⌅

-maxi �i � 2
c⌅N2/3 ↵ s

.
= TW⌅(s),
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1.9. Universality of the Tracy-Widom laws

where:

TW1(s) = E(s)H(s), c1 = 1,
TW2(s) = H2(s), c2 = 1,

TW4(s) =
E(s) + 1/E(s)

2
H(s), c4 = 2�2/3.

TW⌅ is called the Tracy-Widom ⌅ law. It is by now well-tabulated7 and can
be used for statistical fits almost as easily as the Gaussian or the Gumbel law.

Figure 7: The p.d.f of the Tracy-Widom laws: �TW◆
⌅(s) for ⌅ = 1 (black), ⌅ = 2

(red) and ⌅ = 4 (blue), plot courtesy of J.M. Stéphan. We emphasize that the
shape (and thus the mean, skewness, etc.) of the distributions are different for
different values of ⌅, thus establishing a clear distinction between the various
symmetry classes.

1.9 Universality of the Tracy-Widom laws

• The Tracy-Widom ⌅ law is expected to be the universal limit law for fluc-
tuations of the maximum of generic ensembles of random matrices in the
orthogonal (⌅ = 1), unitary (⌅ = 2), or symplectic (⌅ = 4) symmetry class.
But it also found in statistical physics (interface growth, non-intersecting 1d
random walks, repulsive particle systems like TASEP,. . . ) and in mathematics.
• The physicists Takeuchi and Sano (2010) observed experimentally the Tracy-
Widom law in nematic liquid crystals. ”Nematic” means that the material
is made of long molecules whose orientation have long-range correlations,
while liquid means that the molecules in the neighborhood of a given one are

7However, to evaluate it, one prefers to use another representation of TW⌅(s) in terms of
Fredholm determinants, obtained in § 8.6.
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1. Introduction

always changing, i.e. the correlation of positions have short range. In nematic
materials, a topological defect is a configuration of orientations that winds
around a point. In 2d, it occurs for instance when the local orientation rotates
like the tangent vector when following a circle throughout the material, in 3d,
the Hopf fibration � : S3 ⇣ S2 is a configuration of orientations realizing a
topological defect. The material studied by Takeuchi and Sano presents two
phases: the phase appearing here in gray (resp. black) has a low (resp. high)
density of topological defects. If one applies a voltage to the grey phase, one
encourages the formation of defects. Once this happens – here at the center
of the picture at time t = 0 – the black phase takes over the grey phase from
this primary cluster of defects. One observes that the interface grows approxi-
mately linearly with time t. However, the turbulence driving the system causes
some fluctuations from samples to samples. The distribution of this fluctua-
tions of radius from the linear drift fits well with the Tracy-Widom ⌅ = 2
law (GUE), and the matching quality improves for large time (Figure 8). The
symmetry class in this case is conditioned by the geometry: a spherical geom-
etry leads to GUE, while a flat interface between two phases would lead to
GOE. This result is confirmed in a theoretical model for the interface growth
analyzed at t ⇣ +• by Sasamoto and Spohn (2010).

2

FIG. 1: (Color online) Growing DSM2 cluster. (a) Images.
Indicated below is the elapsed time after the emission of laser
pulses. (b) Snapshots of the interfaces taken every 5 s in the
range 2 s � t � 27 s. The gray dashed circle shows the mean
radius of all the droplets at t = 27 s. The coordinate x at this
time is defined along this circle.

which are spaced by a polyester film of thickness 12µm
enclosing a region of 16mm ⇥ 16mm for the convec-
tion. We chose here the homeotropic alignment of liquid
crystals in order to work with isotropic DSM2 growth,
which is realized by coating N ,N -dimethyl-N -octadecyl-
3-aminopropyltrimethoxysilyl chloride uniformly on the
electrodes using a spin coater. The cell is then filled with
N -(4-methoxybenzylidene)-4-butylaniline doped with
0.01 wt.% of tetra-n-butylammonium bromide. The cut-
o� frequency of the conductive regime [11] is 850±50Hz.
The cell is maintained at a constant temperature 25.0 ⇤C
with typical fluctuations in the order of 10�3K. The con-
vection is observed through the transmitted light from
light-emitting diodes and recorded by a CCD camera.
For each run we apply a voltage of 26V at 250Hz,

which is su⇥ciently larger than the DSM1-DSM2 thresh-
old at 20.7V. After waiting a few seconds, we shoot into
the cell two successive laser pulses of wavelength 355 nm
and energy 6 nJ to trigger a DSM2 nucleus [13]. Figure
1 displays typical growth of a DSM2 cluster. We repeat
it 563 times to characterize the growth process precisely.
We define the local radius R(x, t) along the circle which

denotes the statistically averaged shape of the droplets,
as sketched in Fig. 1(b). This measures the interfacial
width w(l, t) ⇤ ⌥

�
⌥[R(x, t)� ⌥R�l]2�l� and the height-

di�erence correlation function C(l, t) ⇤ ⌥[R(x + l, t) �
R(x, t)]2�, where ⌥· · ·�l and ⌥· · ·� denote the average over
a segment of length l and all over the interface and ensem-
bles, respectively. Both w(l, t) and C(l, t)1/2 are common
quantities for characterizing the roughness, for which the
Family-Vicsek scaling [Eq. (1)] is expected.
This is tested in Fig. 2. Raw data of w(l, t) and

C(l, t)1/2 measured at di�erent times [Fig. 2(a,b)] grow
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FIG. 2: (Color online) Scaling of the width w(l, t) and the
height-di�erence correlation function C(l, t). (a,b) Raw data
of w(l, t) (a) and C(l, t)1/2 (b) at di�erent times t. The length
scale l is varied up to 2�⇥R⇤ and �⇥R⇤, respectively. (c)
Time evolution of the overall width W (t) and the plateau
level Cpl(t)

1/2 of the correlation function. (d) Collapse of the
data in (a) showing the Family-Vicsek scaling [Eq. (1)]. The
dashed lines are guides for the eyes showing the KPZ scaling.

algebraically for short length scales l ⌅ l⇥ and converge
to constants for l ⇧ l⇥ in agreement with Eq. (1). The
power � of the algebraic regime measured in the last
frame t = 28.4 s is found to be � = 0.50(5). Here, the
number in the parentheses indicates the range of error
in the last digit, which is estimated both from the un-
certainty in a single fit and from the dependence on the
fitting range. The found value of � is in good agreement
with the KPZ roughness exponent �KPZ = 1/2.

The temporal growth of the roughness is measured by
the overall width W (t) ⇤

�
⌥[R(x, t) � ⌥R�]2� and the

plateau level of the correlation function, Cpl(t)1/2, de-
fined as the mean value of C(l, t)1/2 in the plateau re-
gion of Fig. 2(b). Both quantities show a very clear
power law t� with ⇥ = 0.336(11) [Fig. 2(c)] in remarkable
agreement with the KPZ growth exponent ⇥KPZ = 1/3.
Furthermore, rescaling both axes in Fig. 2(a) with the
KPZ exponents, we confirm that our data of w(l, t) col-
lapse reasonably well onto a single curve [Fig. 2(d)]. A
collapse of the same quality is obtained for C(l, t)1/2.
We therefore safely conclude that the DSM2 interfacial
growth belongs to the (1+1)-dimensional KPZ class. In
passing, this rules out the logarithmic temporal scaling
claimed by Escudero for the droplet geometry [14].

Our statistically clean data motivate us to test further
predictions on the KPZ class beyond those for the scaling.
In this respect one of the most challenging benchmarks
may be the asymptotic distribution of height fluctua-
tions, calculated exactly for solvable models [5, 6]. A gen-
eral expression was proposed by Prähofer and Spohn [6],
which reads h(t) ⌃ v⌅t+ (A2⇤t/2)1/3⇧ with A ⇤ D/2⌅,
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FIG. 3: (Color online) Parameter estimation. (a) Growth rate
d⇤R⌅/dt averaged over 1.0 s against t�2/3. The y-intercept of
the linear regression (dashed line) provides an estimate of �.
(b) C(l, t)/l against l for di�erent times t. Inset: nominal
estimates of A obtained from w(l, t) (blue bottom symbols)
and C(l, t) (green top symbols) as functions of t (see text).

the asymptotic growth rate v⇥, and a random variable
⇥ obeying the Tracy-Widom (TW) distribution [15], or
the (rescaled) largest eigenvalue distribution of large ran-
dom matrices. The random matrices are from the Gaus-
sian unitary and orthogonal ensemble (GUE and GOE)
[16] for curved and flat interfaces, respectively. This im-
plies an intriguing relation to the random matrix the-
ory and requires no fitting parameter provided that the
values of the two KPZ parameters � and A are mea-
sured. The prediction was tested once for flat interfaces
in the paper combustion experiment [17] with an appar-
ent agreement. However, the authors had to shift and
rescale the distribution function for want of the values of
the KPZ parameters, in which case the di�erence among
the predicted distributions and the Gaussian one is un-
pronounced. They also had to discard data subject to
intermittent advance of burning fronts due to quenched
disorder [17]. Therefore, a quantitative test of Prähofer
and Spohn’s prediction has not been carried out so far.

We first measure the value of � experimentally. For
the circular interfaces, � is given as the asymptotic radial
growth rate, which has a leading correction term as � ⌃
d�R /dt+avt�2/3 for t ⇧ ⌥ [18]. This relation is indeed
confirmed in Fig. 3(a) and yields a precise estimate at
� = 35.40(23)µm/s.

The parameterA can be determined, at least for flat in-
terfaces, from the amplitude of C(l, t) and w(l, t) through
C ⌃ Al and w2 ⌃ Al/6 in the limit t ⇧ ⌥ [18]. Fig-
ure 3(b) shows C(l, t)/l against l for di�erent times t. A
similar series of plots is obtained for 6w2/l. The value
of A can be estimated from the plateau level or the lo-
cal maximum of these plots, but we find that these es-
timates increase slowly with time and do not agree with
each other (inset). This allows us to have only a rough
estimate A ⌅ 10µm for the range of time we study.

Now we test Prähofer and Spohn’s prediction for the
circular interfaces:

R(t) ⌃ �t+ (A2�t/2)1/3⇥GUE (3)
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FIG. 4: (Color online) Local radius distributions. (a) Cumu-
lants ⇤Rn⌅c vs t. The dashed lines are guides for the eyes

showing the indicated powers. (b) Skewness ⇤R3⌅c/⇤R2⌅3/2c

and kurtosis ⇤R4⌅c/⇤R2⌅2c . The dashed and dotted lines indi-
cate the values of the skewness and the kurtosis of the GUE
and GOE TW distributions. (c) Local radius distributions
as functions of q ⇥ (R � �t)/(A2�t/2)1/3. The dashed and
dotted lines show the GUE and GOE TW distributions, re-
spectively. (d) Di�erences in the cumulants of q and ⇥GUE.
The dashed line indicates ⇤qn⌅c = ⇤⇥n

GUE⌅c. Inset: the same
data for n = 1 in logarithmic scales. The dashed line is a
guide for the eyes.

with a random variable ⇥GUE obeying the GUE TW dis-
tribution. We first compute the cumulant �Rn c, for
which Eq. (3) implies �Rn c ⌃ (A2�/2)n/3�⇥n

GUE ctn/3
for n ⇤ 2. Our data indeed show this power-law be-
havior in time [Fig. 4(a)], though higher order cumu-
lants are statistically more demanding and hence provide
less conclusive results. We then calculate the skewness
�R3 c/�R2 3/2c and the kurtosis �R4 c/�R2 2c , which do
not depend on the parameter estimates. The result in
Fig. 4(b) shows that both amplitude ratios asymptoti-
cally converge to the values of the GUE TW distribution,
about 0.2241 for the skewness and 0.09345 for the kurto-
sis [6], and clearly rules out the GOE TW and Gaussian
distributions. Conversely, if we admit the GUE TW dis-
tribution, the amplitude of �R2 c o�ers a precise estimate
of A at 9.98(7)µm, which is consistent with the direct es-
timate obtained above and hence used in the following.

Histograms of the local radius R(x, t) are then made
and shown in Fig. 4(c) for two di�erent times as func-
tions of q ⇥ (R � �t)/(A2�t/2)1/3, which corresponds
to ⇥GUE if Eq. (3) holds. The experimental distributions
show remarkable agreement with the GUE TW one with-
out any fitting, apart from a slight horizontal translation.
Indeed, time series of the di�erence between the nth or-
der cumulants of q and ⇥GUE [Fig. 4(d)] reveal that the

Figure 8: Reprinted with permission from K. Takeuchi and M. Sano, Phys. Rev. Lett.
104 230601 (2010) © APS. Comparison between fluctuations of the radius of a
growing interface in nematic liquid crystals and Tracy-Widom laws.

• Let ⇥N be the length of the longest cycle of a permutation chosen at random,
uniformly in SN . Vershik and Kerov (1977) proved that E[⇥N ] � 2

 
N when

N ⇣ •. Baik, Deift and Johansson (2000) went further by exploiting a relation
between this problem and an invariant ensemble of random matrices with
integer eigenvalues, and showed:

1.3 theorem. The reduced r.v. (⇥N � 2
 

N)/N1/6 converges in law to the Tracy-
Widom GUE law.
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1.10. Conclusion

1.10 Conclusion

Though the hopes concerning universality could look like a wishful thinking
in the 50s, they are now supported by many experimental or numerical data,
as well as rigorous results. In mathematics, the quest for weaker and weaker
assumptions to guarantee that a certain limit law appears led to interesting
but difficult problems. Random matrix theory motivated the developments of
many techniques of asymptotic analysis since the 80s, useful for other fields
(statistical physics, integrable systems, . . . ). We will illustrate some of them in
the course. As a summary, we will encounter:

• for real Wigner matrices: universality of the semi-circle law*, central limit
theorem for the fluctuations of linear statistics*, sine kernel distributions
in the bulk, Airy kernel distributions at the edge, Tracy-Widom GOE
distribution for fluctuations of the maximum.

• for the 1-trace hermitian matrix model : non-universality of the spectral
density, central limit theorem only in the 1-cut regime*, sine kernel laws
in the bulk**, Airy kernel laws kernel distributions at the generic edge**,
Tracy-Widom GUE law for fluctuations of the maximum at a generic
edge**.

The statements * will be proved in the course, while ** will be derived in the
Gaussian ensembles only (for which explicit computations can be carried out
at an elementary level). We will state (part of) the other results, but their proof
fall out of the scope of this course.
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2. Some matrix inequalities and identities

2 Some matrix inequalities and identities

Lecture 3 (1h30)
October 13th, 2014

2.1 Hadamard inequality

2.1 lemma. Let v1, . . . , vN  CN be N-dimensional vectors.

det(v1, . . . , vN) ⌦
N

’
i=1

|vi|.

Proof. By homogeneity, we can rescale the vectors and assume |vi| = 1. Let
A = (v1, . . . , vN), and s1, . . . , sN its singular values. Since the geometric mean
is bounded by the arithmetic mean, we have:

|det A| =
�

det(AA†)
⇥1/2

=
� N

’
i=1

si

 1/2
⌦
� 1

N

N

Â
i=1

si

 N/2
.

So:

|det A| ⌦
� 1

N
Tr AA†

 N/2
=
� 1

N

N

Â
i=1

|vi|2
 N/2

= 1,

which is the desired inequality.

Since |vi|2 = ÂN
j=1 |vi,j|2 ⌦ N|vi|2•, we deduce:

2.2 corollary (Hadamard inequality). det(v1, . . . , vN) ⌦ NN/2 ’N
i=1 |vi|•.

It shows that the determinant of a N ⇥ N matrix with bounded coefficients
grows much slower than N! when N ⇣ •.

2.2 Hofmann-Wielandt inequality

Let A, B  HN(C), and �A
1 ↵ · · · ↵ �A

N the eigenvalues of A (idem for B) in
decreasing order.

2.3 lemma (Hofmann-Wielandt). ÂN
i=1(�

A
i � �B

i )
2 ⌦ Tr (A� B)2.

The right-hand side of the Hofmann-Wielandt inequality is the matrix L2

norm ||A� B||22, and is bounded by
 

2||A� B||2
2,RN2 .

2.4 corollary. If we equip HN(C) with the L2-norm, A �⇣ (�A
1 , . . . ,�A

N) is 1-
Lipschitz.

A fortiori, eigenvalues of a hermitian matrix are continuous functions of
its entries8. This also justifies, if M is a HN(C)-valued r.v. in some probability
space, that its eigenvalues are r.v. in the same probability space since they are
measurable functions of M.

8Continuity can be proved alternatively by remarking that the coefficients of the characteris-
tic polynomial are continuous functions of the entries of A, and the roots of a polynomial are
continuous functions (use Cauchy residue formula to locate the roots !) of the coefficients.
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2.3. Convex matrix functions from eigenvalues

Proof. It is equivalent to prove Tr(AB) ⌦ ÂN
i=1 �

A
i �

B
i . Let us diagonalize A

and B: we denote U a unitary matrix of change of eigenbasis from A to B, and
LA = diag(�A

1 , . . . ,�A
N) and similarly LB. Then:

Tr(AB) = Tr(LAU�1LBU) =
N

Â
i,j=1

�A
i �

B
j |Ui,j|2.

This is a linear (hence convex) function of Si,j = |Ui,j|2, and we would like
to maximize it over the (convex) set S of doubly-stochastic matrices, i.e. S 
MN(R) satisfying

⌫i, j, Si,j ↵ 0,
N

Â
l=1

Si,k = 1,
N

Â
k=1

Sk,j = 1,

By convexity, the maximum is achieved in the set of extreme points of S ,
i.e. the set of permutation matrices. We thus need to find the maximum over
◆  SN of:

f (◆) =
N

Â
i=1

�A
i �

B
◆(i).

The announced result follows if we show that the maximum of f◆ is achieved
for ◆ = id. Due to the ordering of eigenvalues, we observe when i0 < j0, k0:

(3) 0 ⌦ (�A
i0 � �A

k0
)(�B

i0 � �B
j0) = �A

i0�
B
i0 + �A

k0
�B

j0 � (�A
k0
�B

i0 + �A
i0�

B
j0).

Now, if ◆ �= id, let i0 := min
⇧

i  J1, NK, ◆(i) �= i
⌃

. By minimality, j0 := ◆(i0)
and k0 := ◆�1(i0) are both greater than i0. The two last terms of (3) occur in
f (◆), and thus can be replaced by the two first terms:

f◆ =
i0�1

Â
i=1

�A
i �

B
i + �A

i0�
A
j0 + · · ·+ �A

k0
�B

i0 + · · ·(4)

⌦
i0
Â
i=1

�A
i �

B
i + · · · = f,◆.(5)

,◆ is a new permutation that is identity of the larger segment J1, i0K, sends
k0 to j0, and coincides with ◆ otherwise. By induction, one finally arrives at
f◆ ⌦ fid.

2.3 Convex matrix functions from eigenvalues

The concentration results we will derive in § 3.3 can be applied only to con-
vex functions of the matrix entries. To some extent, eigenvalues can produce
convex functions. If A HN(C), �A

i still denote the eigenvalues in decreasing
order.
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2. Some matrix inequalities and identities

2.5 lemma (Min-Max characterization of eigenvalues). For any i  J1, NK,

�A
i = sup

VGri(CN)

inf
vV
|v|2=1

(v|Av) = inf
VGrN�i+1(CN)

sup
vV
|v|2=1

(v|Av).

Proof. Since �A
i = ���A

N�1+i, it is enough to prove the first equality. Let us de-
note (e1, . . . , eN) an orthonormal basis of eigenvectors of A for its eigenvalues
�A

i (in decreasing order). By taking V = vect(e1, . . . , ei), we see that

�A
i ⌦ sup

VGri(CN)

inf(v|Av).

So, it remains to show the reverse inequality. For dimensional reasons, any
V  Gri(C

N) will have a non-zero intersection with the codimension (i � 1)
subspace vect(ei, . . . , eN): let v = ÂN

j=i vjej  V \ {0}. Then:

(v|Av) =
N

Â
j=i

�A
j |vj|2 ⌦ �A

i .

In particular, �A
max = �A

1 = sup|v|2=1(v|Av) is the sup of linear (hence
convex) functions, so �A

max is a convex function of the entries of A. The other
eigenvalues fail to be convex functions, but something can be said for the
partial sums of ordered eigenvalues. First, we define the partial trace of a
matrix A  MN(C) over a subspace V  CN , denoted TrV A. Choosing an
orthonormal basis (vi)i of V, we set:

TrV A := Â
i
(vi|Avi),

and this actually does not depend on the choice of the orthonormal basis.

2.6 lemma (Partial sums). For any k  J1, NK:

k

Â
i=1

�A
i = sup

VGrk(CN)

TrV A,

N

Â
i=k+1

�A
i = inf

VGrk(CN)
TrV A.

Proof. Again, it is enough to prove the first equality, and we will proceed by
proving a double inequality. We keep the notations of the previous proof.
Since Âk

i=1 �
A
i is the partial trace over vect(e1, . . . , ek), we have Âk

i=1 �
A
i ⌦

supVGrk(CN) TrV A. We now show the converse by induction on the dimension
N. For N = 1, the result is obvious. Assume it holds in dimension N � 1. Let
W = vect(e2, . . . , eN). For any V  Grk(C

N), W ⇢ V must contain a subspace
V◆ of dimension (k� 1). Let v0  V be a unit vector such that V ⌘ C · v0 ⌅V◆
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2.4. Convex matrix functions from convex real functions

is an orthogonal sum. We have:

TrV A = TrV◆A + (v0|Av0),

where V◆ is considered as a subspace of W ⌘ CN�1, for which we can ap-
ply the induction hypothesis (remark that the ordered eigenvalues of A for
the eigenvectors in W are �A

2 , . . . ,�A
N). Besides, we have the obvious bound

(v0|Av0) ⌦ �A
1 . Therefore:

TrV A ⌦
� k

Â
i=2

�A
i

 
+ �A

1 ,

which is the desired result in dimension N. We conclude by induction

Since the partial sums of eigenvalues in decreasing order are suprema of
linear (hence convex) functions of A, we deduce:

2.7 corollary. For any k  J1, NK, the function A �⇣ Âk
i=1 �

A
i is convex over

HN(C).

2.4 Convex matrix functions from convex real functions

Another source of convex functions of the matrix entries arise from convex
functions on R.

2.8 lemma (Klein lemma). If f : R ⇣ R is a convex function, A �⇣ Tr f (A) is a
convex function over HN(C).

Proof. We first assume that f is twice differentiable. In that case, convexity
implies:

g(x, y) := f (x)� f (y)� (x� y) f ◆(y) ↵ inf c f (x� y)2 c f = inf f ◆◆/2 ↵ 0.

Let us apply this function to two matrices X, Y  HN(C) and compute the
trace. To compute the terms involving both X and Y in the trace, we need to
introduce as in the proof of Lemma 2.3 a matrix U of change of basis between
eigenvectors of X and Y.

Tr g(X, Y) =
� N

Â
i=1

f (�X
i )� f (�Y

i ) + �Y
i f ◆(�Y

i )
 
�

N

Â
i,j=1

|Ui,j|2�X
i f ◆(�Y

j ).

We can for free substitute the identity ÂN
j=1 |Ui,j|2 = 1 to convert the simple

sum to a double sum, and we find:

Tr g(X, Y) =
N

Â
i,j=1

|Ui,j|2 g(�X
i ,�Y

j ) ↵ 0.

Now, to get rid of the term involving f ◆, let us apply this inequality firstly to
(X, Y) ⇣ (A, (A + B)/2), secondly to (X, Y) = (B, (A + B)/2), and sum up
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2. Some matrix inequalities and identities

the two inequalities. The result is:

Tr f
�A + B

2
) ⌦ 1

2

�
Tr f (A) + Tr f (B)

 
.

A function satisfying this property is said midpoint convex, and since here
A �⇣ Tr f (A) is continuous (because we assume f R ⇣ R convex hence
continuous), this is known to imply convexity. Indeed, using repeatedly this
inequality, one can show Tr f (tX + (1� t)Y) ⌦ t Tr f (X) + (1� t)Tr f (Y) for
any t  [0, 1] that has a finite dyadic expansion, i.e. t = ÂK

k=1 �k 2�k with some
�k  {0, 1}. Then, one can approximate any t  [0, 1] by truncations of its
dyadic expansion, and using the continuity of Tr f , conclude to the convexity
inequality.

If the assumption of twice differentiability of f is dropped, we can still
approximate (for simple convergence) by smooth functions by performing a
convolution with a smooth non-negative function h◆ tending to a Dirac when
◆⇣ 0. For instance:

f◆(x) =
(

R

f (x + y) h◆(�y), h◆ =
exp(�x2/2◆2) 

2⇣◆2
.

The positivity of h◆ ensures that f� is also convex – as an (infinite) linear
combination of convex functions. So, A �⇣ Tr f◆(A) is a convex function for
any ◆ > 0, and by taking the limit ◆ ⇣ 0, one gets the convexity inequality
for A �⇣ Tr f (A) in full generality.

It is also useful to see how the Lipschitz behavior of f carries on to matrix
functions:

2.9 lemma. If f : R ⇣ R is k-Lipschitz, then X �⇣ N�1 Tr f (X) is
 

2/Nk-
Lipschitz for the L2-norm on HN(C).

Proof. Let f̃ : Rn ⇣ R defined by F(x1, . . . , xN) = N�1 ÂN
i=1 f (xi). We have:

⌥⌥ f̃ (x)� f̃ (y)
⌥⌥ ⌦ N�1

N

Â
i=1

k|xi � yi| ⌦ N�1/2k |x� y|2

by Cauchy-Schwarz inequality. Then, if we denote F : M �⇣ f̃ (L(M)), we
have:

|F(M)� F(M◆)| ⌦ N�1/2k
� N

Â
i=1

�
L(M)

i �L(M◆)
i
⇥2
 1/2

⌦ N�1/2k
�
Tr(M�M◆)2⇥1/2

by Hofmann-Wielandt inequality.
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2.5. Block determinants and resolvent

2.5 Block determinants and resolvent

Imagine a matrix M  MN(C) is cut into 4 blocks by a decomposition N =
r + (N � r):

M =

⌦
A B
C D

↵
.

Assume A is invertible. A useful trick to compute its determinant in terms
of the blocks is to use the factorization into block upper/lower triangular
matrices:

M =

⌦
A 0r,N�r
C D� BA�1

↵⌦
1r A�1B

0N�r,r 1N�r

↵
.

Then, by multiplicativity of the determinant:

2.10 lemma (Block determinant). det M = det A · det(D� BA�1C).

The result is not 2⇥ 2 Cramer’s rule det(AD � BC) – which does not make
sense anyway because dimensions of blocks do not match – but close !

One application we will use in the study of Wigner matrices is a nesting
property of the resolvent of a matrix.

2.11 definition. Let M MN(C). The function RM : z �⇣ (z�M)�1 defined
for z  C \ Sp M is the resolvent of M.

RM(z) is a matrix-valued holomorphic function9 of z in the complement of
the spectrum of M, and it behaves like RM(z) � N/z when z ⇣ •.

2.12 lemma (Resolvent on the diagonal). Let M  HN(C), and i  J1, NK. We
denote M[i]  MN�1(C) the matrix M with its i-th column and i-th row removed,
and vM

i  CN�1 the i-th column of M with its N-th entry removed. We have for any
z / Sp M:

RM(z)i,i =
1

z�Mi,i �
�
vM

i
⌥⌥(z�M[i])�1vM

i
⇥ .

This identity can be rewritten:

RM(z)i,i =
1

z�Mi,i �
�
vM

i
⌥⌥RM[i](z) vM

i
⇥ .

In the right-hand side appears the resolvent of the matrix M[i] of size (N� 1),
which was a submatrix of M. This equation thus offers a recursive (on the size
N) way to control the resolvent.

Proof. By Cramer’s rule for the computation of the inverse:

RM(z)i,i =
det(z�M[i])
det(z�M)

.

Besides, after permutations of rows and columns to bring the i-th row and

9This means that each entry is a holomorphic function.
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2. Some matrix inequalities and identities

i-th column to be the last ones (that does not change the determinant), the
denominator reads:

det(z�M) = det
⌦

z�M[i] �vi
�v†

i z�Mi,i

↵
.

To write the bottom-left corner of the matrix, we have used the fact that M is
hermitian. Since z / Sp M, (z�M) is be invertible, thus z�M[i] must also be
invertible. So, we can compute this determinant using its (N � 1) + 1 blocks:

det(z�M) = det(z�M[i]) ·
�
z�Mi,i � v†

i (z�M[i])�1vi

 

= det(z�M[i]) ·
�
z�Mi,i � (vi|(z�M[i])�1vi)

⇥
.

The result follows.
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3 Wigner matrices

Lecture 4 (1h30)
October 14th, 2014Let MN be a real Wigner matrix of size N (§ 1.2), and denote its eigenvalues:

L(MN) = (�(MN)
1 , . . . ,�MN

N ).

The empirical measure is the random probability measure:

L(MN)
N =

1
N

N

Â
i=1

⌃
�
(MN )
i

and the linear statistics probed by a test function f is the r.v.

L(MN)
N [ f ] =

(
f (x)dL(MN)

N (x).

This chapter is devoted to the proof of Wigner’s theorem:

3.1 theorem (Universality of semi-circle law). L(MN)
N converges for the weak

topology, in probability, to the probability measure µsc with density

✓sc(x) = 1[�2,2](x)
3

4� x2dx.

In other words, for any function f continuous bounded, and any ⌥ > 0:

lim
n⇣•

P
-⌥⌥⌥

1
N

N

Â
i=1

f (�(MN)
i )�

2(

�2

f (x) ✓sc(x)dx
⌥⌥⌥ > ⌥

.
= 0.

µsc is called the semi-circle law, referring to the shape of the graph of its
density (Figure 9).

3.2 lemma. The odd moments of the semi-circle law vanish, and the even moments
are:

⌫k ↵ 0, µsc[X2k] = Cat(k) =
1

k + 1

⌦
2k
k

↵
.

Cat(k) are the Catalan numbers: they enumerate planar pairings, trees,
and many other combinatorial objects. As we shall see in Chapter ??, their
occurrence in RMT is not accidental.

Proof. The odd moments vanish since ✓sc is even. For the even moments, we
use the change of variable x = 2 cos ⌘:

µsc[X2k] =
1

2⇣

2(

�2

x2k
3

4� x2 dx =
22k+2

2⇣

⇣(

0

cos2k ⌘ sin2 ⌘ = 22k+1(mk �mk+1),
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3. Wigner matrices

!! !" # " !

#$"

#$!

#$%
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#$'

Figure 9: Plot of the density ✓sc of Wigner semi-circle law.

where:

mk :=
⇣(

0

d⌘
⇣

cos2k ⌘ = 2�2k
2k

Â
m=0

⌦
2k
m

↵ ⇣(

0

d⌘
⇣

e2i⌘(k�m)d⌘ = 2�2k
⌦

2k
k

↵
.

Hence:
µsc[X2k] = 2

� (2k)!
k!2

� 1
4
(2k + 2)!
(k + 1)!2

 
=

2k!
k!(k + 1)!

after reducing at the same denominator.

Since in Wigner matrices the distribution of the entries has not been speci-
fied, Theorem 3.1 can be considered as our first universality result. The proof
relies on two important tools, namely the notion of Stieltjes transform, and
concentration inequalities. They both have their own interest beyond random
matrix theory, so we shall present them independently in § 3.2 and 3.3.

3.1 Stability under perturbations

With the Hofmann-Wielandt inequality, one can show that many perturba-
tions or truncations of random matrices do not affect limit laws for eigen-
value statistics. Take FN : RN ⇣ C a kN-Lipschitz function, and DN a random
matrix. We have:

⌥⌥FN(L(MN+DN))� FN(L(MN))
⌥⌥ ⌦ kN

� N

Â
i=1

�
�
(MN+DN)
i � �

(MN)
i

⇥2
 1/2

⌦ kN
�
Tr D2

N
⇥1/2.

Therefore,

P
-⌥⌥FN(L(MN+DN))� FN(L(MN))

⌥⌥ > ⌥
.
⌦ P

-
Tr (kNDN)

2 ↵ ⌥2
.

⌦ (kN/⌥)2 E
⇤
Tr D2

N
⌅
,(6)
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3.1. Stability under perturbations

where the last inequality follows from Chebyshev inequality. Subsequently, if
F(L(MN)) converges in probability and k2

NE
⇤
Tr D2

N
⌅
⇣ 0 when N ⇣ •, then

F(L(MN+DN)) has the same limit.
This setting can be specialized to linear statistics: if f : R ⇣ C is a k-

Lipschitz function, we set

FN(x1, . . . , xN) :=
1
N

N

Â
i=1

f (xi).

Then, F is Lipschitz with constant kN = kN�1/2 (by application of Cauchy-
Schwarz inequality). So, convergence in probability of L(MN)

N [ f ] is unchanged
under perturbations DN satisfying:

(7) E
⇤
Tr D2

N
⌅
� N.

For instance, this applies when DN is a diagonal matrix of mean 0 whose
entries have variance o(1).

3.3 lemma. It is enough to prove Theorem 3.1 for Wigner matrices with vanishing
diagonal.

Another consequence is that, in a random matrix MN whose entries are
of order N�1/2, we can actually replace o(N2) entries by their mean without
changing the convergence in probability of linear statistics ! A less shocking
restatement is that we can make deterministic a small (= tending to 0 when
N ⇣ •) fraction of the entries to our wish. (7) is also satisfied if DN is a
random matrix with bounded rank matrix and spectral radius � N.

A preliminary result in the same spirit is:

3.4 lemma. It is enough to show Theorem 3.1 assuming the existence of a uniform
C > 0 such that |(MN)i,j| ⌦ C/

 
N

In particular, in the definition of Wigner matrices, one could waive the
conditions that all moments of X1 and Y1,2 are finite.

Proof. Here, MN denotes a Wigner matrix. Let C > 0 and denote B(i, j; C)
the event {

 
N|(MN)|i,j < C}. By Chebyshev inequality and the variance

conditions in the definition of a Wigner matrix:

⌫i, j  J1, NK, P[B(i, j; C)] ⌦ 2C2

N
.

We define a new Wigner matrix which has bounded entries:

( ,MN;C)i,j :=
(MN)i,j1B(i,j;C) �E

⇤
(MN)i,j1B(i,j;C)

⌅

◆i,j;C
,

where ◆2
i,j;C = Var

⇤
N1/2(MN)i,j1B(i,j,C)

⌅
was included to match the variance

requirements in the definition of a Wigner matrix, and we have limC⇣• ◆i,j;C =
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3. Wigner matrices

1 + ⌃i,j. We consider DN;C = ,MN;C �MN and compute:

1
N

E
⇤
Tr D2

N
⌅
⌦ 1

N

N

Â
i,j=1

Var
-
(MN)i,j ·

�
1B(i,j;C)c + (◆�1

i,j;C � 1)1B(i,j;C)
 .

⌦ 1
N

N

Â
i,j=1

Var
⇤
(MN)i,j

⌅
+ CN max

(i,j)=(1,2),(1,1)

⌥⌥◆�1
i,j;C � (1 + ⌃i,j)

⌥⌥.

Since the off-diagonal entries (resp. the diagonal entries) of MN are i.i.d. with
variance bounded by 2/N, and there are N2 terms in the sum, the first sum
can be made smaller than any ⌥ > 0 by choosing C⌥ > 0 independent of N but
large enough. Besides, since ◆i,j;C converges to (1 + ⌃i,j), the second term can
also be made smaller than ⌥ if we take a maybe larger value of C⌥. Applying
(6) for functions f bounded by 1 and with Lipschitz constant k ⌦ 1, we obtain:

⌥⌥L( ,MN;C⌥ )
N [ f ]� L(MN)

N [ f ]
⌥⌥ ⌦ 2⌥

uniformly in N. Therefore, the weak convergence of L( ,MN;C)
N implies the weak

convergence of the original empirical measure L(MN)
N .

3.2 Stieltjes transform

3.5 definition. If µ  M1(R), we define its Stieltjes transform Wµ as a
function of z  C \ R:

Wµ(z) =
(

R

dµ(x)
z� x

.

If supp µ  A, then Wµ is actually defined for z  C \ (supp µ).

As an illustration, let us compute the Stieltjes transform of the semi-circle law:

3.6 lemma. Wµsc(z) =
z�
 

z2�4
2 .

In this expression, the sign of the squareroot is chosen such that z �⇣
 

z is
holomorphic in C \ R�, and it sends R+ to R+.

Proof. There are basically two methods to compute the Stieltjes transform of
a measure with an explicit density. The first one exploits the fact that the
coefficients of its asymptotic expansion at z ⇣ • away from the real axis is
given in terms of the moments:

Wµsc(z) =
(

R

dµsc(x)
z� x

= Â
m↵0

1
zm+1

(

R

xmdµsc(x).

The series with moments given by Lemma 3.2 gives the result announced. The
second method consists in representing the integral over R as a contour inte-
gral around the support, and computing this integral by moving the contours
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3.2. Stieltjes transform

in the complex plane and using Cauchy residue formula. Here, we find:

Wµsc(z) =
2(

�2

dx
2⇣

 
4� x2

z� x
=
% dx

4i⇣

 
x2 � 4
x� z

,

and therefore:

Wµsc(z) = Res
x⇣z,•

 
x2 � 4
x� z

=
�
 

z2 � 4 + z
2

.

The Stieltjes transform has the following properties:

(i) z �⇣ Wµ(z) is a holomorphic function of z  C \ (supp µ).

(ii) Wµ(z) � 1/z when z ⇣ • and Re z remains bounded away from 0.

(iii) (2i⇣)�1�Wµ(a � ib) �Wµ(a + ib)
⇥

defines a positive measure on a 
supp µ in the limit b ⇣ 0+.

and the limit measure is µ. To show (iii), we first observe a probabilistic inter-
pretation of the Stieltjes transform:

a �⇣
Im Wµ(a� ib)

⇣
=

Wµ(a� ib)�Wµ(a + ib)
2i⇣

=
(

R

dµ(x)
⇣((x� a)2 + b2)

is the density of the probability measure µ ⇤ Cb, where Cb is a Cauchy law.
And, for any continuous bounded function f , µ ⇤ Cb[ f ] = µ[ f ⇤ Cb]. Since
f ⇤ Cb converges pointwise to f and remains uniformly bounded, we have
limb⇣0 µ[ f ⇤ Cb] = µ[ f ] by dominated convergence.

Conversely, any function W satisfying these three properties is the Stieltjes
transform of a probability measure. (iii) allows the reconstruction of the mea-
sure µ from its Stieltjes transform, and (ii) is equivalent to the requirement
that the total mass of µ is 1.

Like the Fourier transform which converts the question of convergence in
law of real-valued r.v. to a question of pointwise convergence of a function, the
Stieltjes transform converts the question of convergence of random probability
measures in vague topology into the question of pointwise convergence of a
random function.

3.7 lemma (Stieltjes continuity, vague10). Let (µn)n be a sequence of random prob-
ability measures on R, and µ a probability measure on R. There is equivalence be-
tween:

(i) µn ⇣ µ almost surely (resp. in probability, resp. in expectation11) in the vague
topology.

10This characterization can be improved, with different arguments, to handle convergence in
weak topology. But one can – and we will – avoid using an improved version of Stieltjes continuity
to prove Wigner’s theorem because the semi-circle law has compact support.

11Convergence in law and convergence Lr �=1 of random probability measures do not make
sense.
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3. Wigner matrices

(ii) For any z  C \ R, Wµn(z)⇣ Wµ(z) almost surely (resp. in probability, resp.
in expectation).

Proof. (i) ✓ (ii). Let z  C \ R, and ⌫C : R ⇣ [0, 1] be a continuous function
with compact support included in [�2C, 2C], and assuming the value 1 on
[�C, C]. We assume C > |z|. We have:

⌥⌥Wµn(z)�Wµ(z)
⌥⌥ ⌦

⌥⌥⌥
(

R

1� ⌫C(x)
z� x

dµn(x)
⌥⌥⌥+
⌥⌥⌥
(

R

1� ⌫C(x)
z� x

dµ(x)
⌥⌥⌥+

+
⌥⌥⌥
(

R

⌫C(x)
z� x

d(µn � µ)(x)
⌥⌥⌥

⌦ 2
C� |z| +

⌥⌥⌥
(

R

⌫C(x)
z� x

d(µn � µ)(x)
⌥⌥⌥.

For any ⌥ > 0, there exists C⌥,z > 0 such that the first term is smaller than
⌥/2, and by assumption, for n > n⌥ independently of C, the second term is
smaller than ⌥/2. Hence for n > n⌥,

⌥⌥Wµn(z)�Wµ(z)
⌥⌥ ⌦ ⌥. This is enough to

conclude in the various modes of convergence.

(ii)✓ (i) Let f  Cc
b(R). We approximate f by its convolution with a Cauchy

law of small width, whose integration against our measures is then controlled
by their Stieltjes transforms:

⌥⌥µn[ f ]� µ[ f ]
⌥⌥ ⌦

⌥⌥µn[ f ]� µn[ f ⇤ Cb]
⌥⌥+
⌥⌥µ[ f ]� µ[ f ⇤ Cb]

⌥⌥

+
⌥⌥⌥
(

R

da f (a) Im Wµn�µ(a� ib)
⌥⌥⌥

For any ⌥ > 0, we can find b⌥ > 0 independent of n such that the two first
terms are smaller than ⌥/3 each. By assumption and dominated convergence
(applicable because f has compact support), the last term with the choice
b := b⌥ can then be made smaller than ⌥/3 for n large enough. Hence the
conclusion.

3.3 Concentration inequalities (basics)
Lecture 5 (1h30)
October 20th, 2014 Concentration inequalities give estimates for the probability of a r.v. to deviate

from a given r.v. or a deterministic variable. They are extremely useful to
establish convergence of r.v. We start to prove the most basic concentration
inequality as a warmup:

3.8 lemma (Höffding lemma). Let X be a centered real-valued r.v., taking values
a.s. in a segment of length ⇥ > 0. Then E[etX ] ⌦ e⇥2t2/2.

3.9 corollary (Höffding inequality). Let X1, . . . , Xn be independent real-valued
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r.v., such that Xi values a.s. in a segment of bounded length ⇥i. Then:

P
-⌥⌥⌥

N

Â
i=1

(Xi �E[Xi])
⌥⌥⌥ > t

.
⌦ 2e�L�2t2/2, L2 :=

n

Â
i=1

⇥2
i .

We can say that ÂN
i=1 Xi is concentrated around its mean, with subgaussian

tails (to characterize the behavior of the bound when t ⇣ •).

Proof. (of the Lemma) Denote I = [a, b] the segment in which X takes values
a.s., its length is ⇥ = b� a > 0. Since X is centered, we must have a < 0 < b.
The rescaled r.v. X̃ = X/(b� a) is centered and takes values a.s. in [�1, 1] –
we slightly enlarged the segment here. By convexity of the exponential:

⌫x̃  [�1, 1], etx̃ ⌦ 1� x̃
2

e�t +
1 + x̃

2
et,

and averaging over x̃:

E[etX̃ ] ⌦ cosh(t) = Â
k↵0

t2k

(2k)!
.

Since (2k)! ↵ 2k k!, we can actually bound:

E[etX̃ ] = et2/2,

and we obtain the announced result when coming back to X.

Proof. (of the Corollary) Xi = Xi � E[Xi] is centered and takes values in a
segment of length ⇥i. If we denote Sn = Ân

i=1 Xi, independence and Höffding
lemma imply:

E[etSn ] ⌦ et2L2/2, L2 :=
n

Â
i=1

⇥i

Thanks to Markov inequality

⌫u, t  R, P[SN ↵ u] ⌦ e�tu+t2L2/2,

and optimizing in t, we find:

P[SN ↵ u] ⌦ e�L�2u2/2.

(The argument of these last four lines is the detail of Chernov inequality). The
same argument can be repeated for �SN , hence:

P[|SN | ↵ u] ⌦ 2 e�L�2u2/2.

There is a more general version of the Höffding inequality for functions of
n independent variables that do not vary too much in each variable:
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3. Wigner matrices

3.10 theorem (McDiarmid inequality). Let X = (X1, . . . , Xn) a sequence of in-
dependent real-valued r.v. Let F : Rn ⇣ C such that, for any i  J1, nK the total
variation of F(x1, . . . , •i, . . . , xn) as a function of its i-th variable is bounded by ci
uniformly in the (n� 1) other variables. Then:

P
⇤⌥⌥F(X)�E[F(X)]| ↵ u

⌅
⌦ 2 e�c�2�2/8, c2 :=

n

Â
i=1

c2
i .

Proof. By decomposing into real and imaginary parts, we can restrict ourselves
to real-valued F. We show by induction on the number of variables n that:

E
⇤
et(F(X1,...,Xn)�E[F(X1,...,Xn)])

⌅
⌦ e2c2t2

, c2 :=
n

Â
i=1

c2
i .

For n = 1, this is Höffding lemma. Assume the result for n� 1 variables. To
show the result for n variables, we condition on the last (n� 1)-variables and
set:

Z := E[F(X)|X2, . . . , Xn], Y := F(X)� Z.

We have:
E[etF(X)|X2, . . . , Xn] = E[etZ]E[etY|X2, . . . , Xn].

The induction hypothesis applies to Z, which is a function of the variables
X2, . . . , Xn, with total variations bounded by (c2, . . . , cn) in the respective vari-
ables. So:

E[etZ] ⌦ e2(Ân
i=2 c2

i )t
2
.

By assumption on the total variation of F with respect to its first variable, Y
takes values in [�c1, c1]. Höffding lemma yields:

E[etY|X2, . . . , Xn] ⌦ e2c2
1t2

.

Hence the claim for n variables. McDiarmid inequality follows by application
of Chernov inequality, as in the previous proof.

McDiarmid inequality exploited the behavior of a function F of n variables
separately in each variable. We can obtain much more powerful results if we
take into account the global Lipschitz behavior in n variables. Talagrand in-
equality is one of those results, and it will be our key to the proof of Wigner
theorem.

3.4 Concentration inequalities (Talagrand)

The intuition behind concentration is, as quoted from Talagrand: A random
variable that depends (in a ”smooth” way) on the influence of many independent vari-
ables (but not too much on any of them) is essentially constant. In other words,
independent fluctuations in general do not help each other going far ! A pre-
cise statement is Theorem 3.12 below: ”smooth dependence” here is Lipschitz
behavior, and we need the extra assumption of convexity to make the proof
work.
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We start with a Lemma whose content is intuitive, but concentrates all the
difficulty of the proof.

3.11 lemma. Let X1, . . . , Xn complex-valued r.v., bounded a.s. by K, and X =
(X1, . . . , Xn). Let A  [�K, K]n be a convex set.

E
⇤

exp(d2(A, X)/16K)
⌅

P[X  A] ⌦ 1.

Here, d(A, •) denotes the Euclidean distance in Rn between A and the point
or the set •.

3.12 theorem. Let X1, . . . , Xn complex-valued r.v., bounded a.s. by K, and X =
(X1, . . . , Xn). Let F : [�K, K]n ⇣ R be a convex, k-Lipschitz function (for the eu-
clidean norm at the source). F(X) is concentrated around its median with subgaussian
tails:

P
⇤
|F(X)�M[F(X)]| ↵ t

⌅
⌦ 4 exp(�t2/16K2k2

F).

We remark that the smaller the Lipschitz constant kF is, the better is the con-
centration estimate for F(X). It is then a simple step to show that the mean
differs from the median only by a finite amount, so we have as well concen-
tration around the mean:

3.13 theorem. With the assumptions of Theorem 3.12, F(X) is concentrated around
its mean with subgaussian tails:

P
⇤
|F(X)�E[F(X)]| ↵ t + 8

 
⇣KkF

⌅
⌦ 4 exp(�t2/16K2k2

F).

Proof of Lemma 3.11

We follow the original proof of Talagrand. We first need a few definitions. Let
W be a probability space, and for any �,�◆  W, define:

⌃(�,�◆) =
�

0 if � = �◆

1 otherwise .

We consider Wn equipped with a product probability measure – which is the
appropriate home for n independent r.v.. We define D : Wn ⇥Wn ⇣ Rn by:

⌫�, � ◆  Wn, D(�, � ◆) =
�
⌃(�1, � ◆1), . . . , ⌃(�n, � ◆n)

⇥
.

It is a comparison vector whose entries are 0 or 1 depending whether �i and
� ◆i coincide or not. Let A be a subset of Wn, and �  Wn. We define the set of
comparison vectors between configurations in A and the configuration �:

U◆A(�) = {s  Rn, ⇠⌦  Wn s = D(⌦, �)
⌃

.

Eventually, we set:
f (A, �) = d(U◆A(�), 0),
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3. Wigner matrices

where the underline stands for the operation of taking the convex hull, and
d is the euclidean distance between this set and 0 in Rn. Obviously, f takes
values in {0, 1,

 
2, . . . ,

 
n}. It is actually more convenient to allow less strict

comparison vectors: we define

UA(�) := {s  Rn ⇠⌦  Wb ⌫i  J1, nK, si ↵ ⌃(�i, ⌦i)}.

If s is an element of this set, we say that an ⌦  A satisfying the defining
property witnesses s. Since in UA(�) we allowed vectors that are more distant
from 0 than comparison vectors, we also have:

f (A, �) = d(UA(�), 0).

We now quantify the relation between the probability to be in A, and large
deviations of the ”distance” between a random point and A.

3.14 lemma. Averaging over �  Wn, we have E[e f 2(A,�)/4]P[A] ⌦ 1.

Proof. We proceed by induction on the ”number of variables” n. If n = 1,
U◆A(�)  {0, 1}, and it contains 0 iff �  A. The expectation value in the
lemma can be computed by conditioning on � belonging to A or not. If we
denote p = P[A], we have:

E
⇤
e f 2(A,�)/4⌅P[A] = (p + (1� p)e1/4)p.

Elementary calculus shows that the maximum of the right-hand side over
p  [0, 1] is reached for p = 1, hence is equal to 1. Now, assume the claim for
n variables, and consider A  Wn+1, �  Wn and �  W. By forgetting the last
component, we define the projection B  Wn of A, and the slice B(�)  Wn

of this projection that are completed to elements of A by adjunction of �:

B :=
⇧
⌦  Wn, ⇠�◆  W, (⌦,�)  A

⌃

B(�) :=
⇧
⌦  Wn, (⌦,�)  A

⌃

We collect two elementary observations:

• If s  UB(�)(�), then (s, 0)  UA(�,�). Indeed, there is an ⌦  B(�) wit-
nessing s. By definition of B(�), we have (⌦,�)  A, and this witnesses
the vector (s, 0) in UA(�,�).

• If s  UB(�), then (s, 1)  UA(�,�). Indeed, there is an ⌦  B witnessing
s. By definition of B, there is an �◆  W such that (⌦,�◆)  A, and since
we do not know if � coincides with �◆ or not, we can at least say that
(⌦,�◆) witnesses (s, 1) in UA(�,�) (this is where the use of U instead of
U◆ is useful).

Then, for any s  UB(�), s◆  UB and t  [0, 1], we have that t(s, 0) + (1�
t)(s◆, 1)  UA(�,�) remarking that we work with the convex hull. This pro-
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vides an upper bound:

f 2(A, (�,�)) ⌦ |t(s, 0) + (1� t)(s◆, 1)|2 = |ts + (1� t)s◆|2 + (1� t)2.

Using the convexity of the square of the euclidean norm:

f 2�A, (�,�)
⇥
⌦ t|s|2 + (1� t)|s◆|2 + (1� t)2,

and then optimizing over the choice of s and s◆:

f 2(A, (�,�)) ⌦ t f 2(B(�), �) + (1� t) f 2(B, �) + (1� t)2.

We can now exponentiate and average over �  Wn (here we use that Wn+1

is equipped with a product measure, so we can keep �  W fixed for the
moment):

EWn
⇤
e f 2(A,(�,�))/4⌅ ⌦ e(1�t)2/4 EWn

⇤
et f 2(B(�),�)/4 e(1�t) f 2(B,�)/4⌅.

We then use Hölder inequality to split the expectation values in two, and the
induction hypothesis for B and B(�) which are subsets of Wn:

EWn
⇤
e f 2(A,(�,�))/4⌅ ⌦ e(1�t)2/4�EWn [e

f 2(B(�),�)/4]
⇥t�

EWn [e f 2(B,�)/4]
⇥1�t

⌦ e(1�t)2/4PWn [B(�)]�tPWn [B]�(1�t) =
exp(gr(t))

PWn [B]

with:

r :=
PWn [B(�)]

PWn [B] , gr(t) :=
(1� t)2

4
� t ln r.

Let us optimize over t  [0, 1]. The minimum of gr over R is reached at tr :=
1 + 2 ln r. When r  [0, e�1/2], tr is non-positive, so the minimum of gr over
[0, 1] is reached at t = 0 and is 1/4. When r ↵ e�1/2, we rather have:

min
t[0,1]

gr(t) = gr(tr) = � ln2 r + ln r.

We would prefer a simpler bound in terms of r, and an exercise of calculus
reveals that:

⌫r  R, min
t[0,1]

gr(t) ⌦ ln(2� r).

Subsequently:

EWn+1
⇤
e f 2(A,(�,�))/4⌅ ⌦ 1

PWn [B]

�
2� PWn [B(�)|�]

PWn [B]

 
.

Finally, we integrate over �. Since
'
�W B� = B, we obtain:

EW
⇤
PWn [B(�)

⌅
= EW

⇤
PWn+1P[A|�]

⌅
= PWn+1 [A].
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Hence:

EWn+1
⇤
e f 2(A,(�,�))/4⌅ ⌦

�
�
PWn+1(A)/PWn [B]

⇥

PWn [A]
, �(x) = x(2� x).

Since maxxR �(x) = 1, we eventually obtain:

EWn+1
⇤
e f 2(A,(�,�))/4⌅ ⌦ 1

PWn+1 [A]
.

Consider X1, . . . , Xn independent r.v. bounded by K > 0, and A  [�K, K]n.
We can always assume Xi’s are defined in the same probability space W, there-
fore X = (X1, . . . , Xn) is a r.v. defined on Wn, and independence means that
the latter is equipped with a product probability measure. Lemma 3.14 can
be applied to the event A = {�  Wn, X(�)  A}, and we now need to
compare the funny distance f (A, �) between a set and a point in Wn with the
usual euclidean distance d(A, X(�)) between a set and a point in Rn.

3.15 lemma. Let ⌦  Wn. If A convex, then d(A, X(⌦)) ⌦ 2K f (A, ⌦).

Proof. Let y = X(⌦). If �  A, we remark that

⌫i  J1, nK, |yi � Xi(�)| = |Xi(⌦i)� Xi(�i)| ⌦ 2K⌃(�i, ⌦i).

Indeed, if the right-hand side is 0, so must be the left-hand side ; and other-
wise, the right-hand side is equal to 2K, and the claim trivially holds because
|Xi(�i)| and |Xi(�

◆
i)| are bounded by K. Let us apply this inequality to each

of the components of some �(1), . . . , �(k)  A, and make a linear combination
with positive coefficients t(1), . . . , t(k) such that Âk

j=1 t(j) = 1:

⌫i  J1, nK,
⌥⌥⌥yi �

k

Â
j=1

t(j) X(�(j))
⌥⌥⌥ ⌦ 2K

k

Â
j=1

t(j) ⌃(�
(j)
i , ⌦i),

and in euclidean norm in Rn:

⌥⌥⌥y�
k

Â
j=1

t(j) X(�(j))
⌥⌥⌥ ⌦ 2K

✓
n

Â
i=1

� k

Â
j=1

t(j) D(�(k), ⌦)
 2
◆1/2

.

Since A is assumed convex, Âk
j=1 t(j) X(�(j)) is in A. Therefore, the distance

d(A, y) is a lower bound for the left-hand side. On the other hand, the infimum
of the bracket in the right-hand side over the t(j)’s and �(k)’s is precisely the
distance from 0 to the convex hull of U◆A(⌦). Hence the claim.

We can now finish the proof of Lemma 3.11. If A  [�K, K]n is convex, then:

E[ed2(A,y)/16K2
] ⌦ E[e f 2(A,⌦)/4] ⌦ 1

P[A]
=

1
P[X  A]

.
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Proof of Theorem 3.12

Let F : [�K, K]n ⇣ R be a convex, kF-Lipschitz function. Then, the level
sets Au := {x  [�K, K]n, F(x) ⌦ u} are convex12, and we can apply
Lemma 3.11. Denoting Au the event {X  Au}:

⌫u  R, E[ed2(Au ,X)/16K2
]P[Au] ⌦ 1.

If u◆ ↵ u, when the event Au◆ is realized the Lipschitz property implies
d(Au, X) ↵ k�1

F |u◆ � u|. Therefore:

E
⇤
ed2(Au ,X)/16K2 ⌥⌥At◆

⌅
↵ exp

�
|u◆ � u|2/16K2k2

F
⇥
.

and:
E
⇤
ed2(Au ,X)/16K2⌅ ↵ P[cAu◆ ] exp

�
|u◆ � u|2/16K2k2

F
⇥
.

All in all, we obtain:

P[Au]P[cAu◆ ] ⌦ exp
�
� |u� u◆|2/16K2k2

F
⇥
.

This already looks like a large deviation estimate. If t ↵ 0, this inequality can
be applied u = M[F(X)] and u◆ = M[F(X)] + t. In this case P[Au] ↵ 1/2
(because the inequality is not strict) and Au◆ is the event {F(X)�M[F(X)] ↵
t}, so:

P
⇤
F(X)�M[F(X)] ↵ t

⌅
⌦ 2 exp

�
� t2/16K2k2

F
⇥
.

If we rather choose u = M[F(X)]� t and u = M[F(X)], we obtain the same
upper bound for the probability of the event {F(X)�M[F(X)] ⌦ �t}. Thus:

P
⇤
|F(X)�M[F(X)]| ↵ t] ⌦ 4 exp

�
� t2/16K2k2

F
⇥
.

Proof of Theorem 3.13

We estimate the difference between the mean and a median using Theo-
rem 3.12:

⌥⌥E
⇤
F(X)�M[F(X)]

⌅⌥⌥ ⌦ E
⇤
|F(X)�M[F(X)]|

⌅

⌦
•(

0

P[|F(X)�M[F(X)]| ↵ t]dt

⌦
•(

0

4 exp
�
� t2/16K2k2

F
⇥
dt

and the last integral is evaluated to 8
 
⇣KkF. The conclusion follows by split-

ting
⌥⌥F(X)�E[F(X)]

⌥⌥ ⌦
⌥⌥F(X)�M[F(X)]

⌥⌥+
⌥⌥E
⇤
F(X)�M[F(X)]

⌅⌥⌥

12in Theorem 3.12, we could replace the assumption that F is convex by the strictly weaker
assumption that its level sets are convex.
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and applying Theorem 3.12.

3.5 Application of concentration in RMT

Here is a nice application in random matrix theory:

3.16 corollary. Let MN be a N ⇥ N random hermitian matrix, whose N2 R-
linearly independent entries are independent r.v. bounded by C/

 
N. Let f : R ⇣

R, be a convex, k f -Lipschitz function.

P
-⌥⌥LN [ f ]�E[LN [ f ]]

⌥⌥ ⌦ t +
8Ck f

 
2⇣

 
N

.
⌦ 4 exp(�Nt2/32C2k2

f ).

Proof. If f : R ⇣ R is a convex, k f -Lipschitz function, we have seen that
A �⇣ N�1 Tr f (A) is convex (Klein lemma 2.8) and has a Lipschitz constant
bounded by

 
2/N · k f . The N2 R-linearly independent entries of MN to be

our random variables, and they are bounded by C/
 

N. The claim follows by
application of Theorem 3.12.

If we are not interested in precise large deviation estimates, we can get rid of
the convexity condition by approximation:

3.17 theorem. Let MN be a N⇥N random hermitian matrix, whose N2 R-linearly
independent entries are independent centered r.v. bounded by C/

 
N. Let f : R ⇣

C be a continuous bounded function. Then LN [ f ]�E[LN [ f ]] converges in probability
to 0.

Proof of Theorem 3.17

If f is only a continuous function without stronger assumption, we can rely
on the approximation lemma:

3.18 lemma. Any continuous f : [�K, K] ⇣ R can be approximated for the sup
norm by the difference of two convex Lipschitz functions.

Proof. Let D the set of f : [�K, K] ⇣ R that are difference of two convex
Lipschitz functions. It is clear that constant functions are in D, and that D
separate points (i.e. for any two x, y  [�K, K], there exist f and g such that
f (x) �= g(y)). If we can prove that D is an algebra, the result would follow
from Stone-Weierstraß theorem. Thus, it remains to justify that D is stable
by multiplication, and more specifically, that the property ”being a difference
of two convex functions” is stable by multiplication13. First, we claim that
in a decomposition f = f1 � f2 with f1, f2 convex functions, we can always
assume fi ↵ 0 for i = 1, 2. Indeed, since convex functions on a compact set are
bounded, there exist constants m1, m2 such that fi + mi = f̃i is non-negative
(and obviously convex). So f = f̃1� f̃2 +m2�m1. If the constant m = m2�m1

13(Actually, since D contains affine functions, stability under multiplication guarantees that
it also contain all polynomials, so we can even approximate any continuous function by the
difference of two convex polynomials)
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3.5. Application of concentration in RMT

is positive, we add it to f̃1, it is negative, we subtract it from f̃2, so as to get a
decomposition of f into non-negative convex functions. Now, if f  D, then
f 2  D: indeed, if f = f1 � f2 is a decomposition into non-negative convex
functions, then f 2 = 2( f 2

1 + f 2
2 )� ( f1 + f2)2 is also one, thus f 2  D. Then, if

f , g  D, we conclude that f g  D by writing f g = [( f + g)2 � ( f � g)2]/4.
.

M �⇣ F(M) can also be considered as a function of the vector L(M) of eigen-
values of M. To use the approximation result, we need to show that the fluc-
tuations of eigenvalues mainly take place in a compact region [�K, K]. We can
actually show a large deviation estimate:

3.19 lemma. There exist c, t0 > 0 independent of N, such that:

⌫t ↵ t0, P
⇤⌥⌥�(MN)

max
⌥⌥ ↵ t

⌅
⌦ e�cNt2

.

Proof. Let v be a deterministic, unit vector. We have:

(MN · v)i =
N

Â
j=1

Mi,jvj,

and by our assumptions, Mi,jvj are centered, independent r.v. uniformly bounded
by CN�1/2. Thanks to Höffding inequality (Corollary 3.9):

P
⇤
|(MN · v)i| ↵ t

⌅
⌦ 2 exp(�Nt2/2C).

Hence:

P
⇤
|MN · v| ↵ t

⌅
⌦

N

Â
i=1

P
⇤
|(MN · v)i| ↵ t

⌅
⌦ 2N exp(�Nt2/2C).

The prefactor of N does not hurt: put in the exponential, it becomes ln N � N,
so up to trading C for some C◆ > C independent of N in this inequality and
assuming t ↵ t0 for some t0 > 0 independent of N, we have:

(8) P
⇤
|MN · v| ↵ t

⌅
⌦ exp(�Nt2/2C◆).

As a matter of fact, we would like to have a similar large deviation result for

⌥⌥�(MN)
max

⌥⌥ = sup
|v|=1

|MN · v|,

but of course, the unit vector realizing the sup is random since it depends on
MN , so (8) does not apply directly. However, we can always cover the unit
sphere of RN by less than cN

0 unit balls of radius 1/2 for some constant c0 > 0
(this is called a 1/2-net). If we denote {w(k)} the set of their centers, it means
that any unit vector v  RN is at a distance less than 1/2 from at least one
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3. Wigner matrices

w(k(v)), and we can write:

|MN · v| ⌦ |MN · w(k(v))|+ |MN · (v� w(k(v)))| ⌦ |MN · w(k(v))|+
⌥⌥�(MN)

max
⌥⌥

2
.

Taking the sup over unit vectors v, we find �
(MN)
max ⌦ 2 supk |MN · w(k)|, and

we can deduce by a naive union bound:

P
⇤⌥⌥�(MN)

max
⌥⌥ ↵ t

⌅
⌦ P

⇤
sup

k
|MN · w(k)| ↵ t/2

⌅

⌦ Â
i

P
⇤
|MN · w(k)| ↵ t/2

⌅
⌦ cN

0 exp(�Nt2/8C◆).

By taking t large enough independently of N, there exists a constant c > 0
such that P

⇤
|�(MN)

max
⌥⌥ ↵ t

⌅
⌦ exp(�cNt2).

If f �= 0, we now prove that for ⌥, ⌃ > 0 small enough independent of N:

(9) P
⇤
L(MN)

N [ f ]
⌥⌥ ↵ ⌥

⌅
⌦ ⌃, L(MN)

N := L(MN)
N �E[L(MN)

N ]

for N large enough. We choose K⌃ > 0 such that:

P[A⌃] ⌦
⌃

4|| f ||•
, A⌃ :=

⇧⌥⌥�(MN)
max

⌥⌥ > K⌃
⌃

.

Since L(MN)
N is a probability measure, we have:

P
⇤⌥⌥L(MN)

N [ f ]
⌥⌥ ↵ ⌥

⌅
⌦ ⌃/2 + P

-⇧⌥⌥L(MN)
N [ f ]

⌥⌥ ↵ ⌥
⌃
⇢Ac

⌃

.
.

Let f̃ = f̃1 � f̃2 be a difference of two Lipschitz convex functions such that
|| f � f̃ ||[�K⌃ ,K⌃ ]

• ⌦ ⌥/4. On the event Ac
⌃, L(MN)

N is a probability measure sup-

ported on [�K⌃, K⌃], so
⌥⌥L(MN)

N [ f � f̃ ]
⌥⌥ ⌦ ⌥/2 uniformly in N, and:

P
⇤⌥⌥L(MN)

N [ f ]
⌥⌥ ↵ ⌥

⌅
⌦ ⌃/2 + P

-⌥⌥L(MN)
N [ f̃ ]

⌥⌥ ↵ ⌥/2
⌃
⇢Ac

⌃

.
.

Eventually, we can apply the concentration given by Corollary 3.16 to the
matrix functions A �⇣ N�1 Tr f̃i(A) for i = 1, 2. It shows that L(MN)

N [ f̃i] for
i = 1, 2 (hence their difference) converge in probability to 0 when N ⇣ •. So,
for N large enough depending on ⌥ and ⌃:

P
⇤⌥⌥L(MN)

N [ f̃ ]
⌥⌥ ⌦ ⌥/2

⌅
⌦ ⌃/2.

and we arrive to (9).

3.6 Proof of Wigner’s theorem
Lecture 6 (1h30)
October 21st, 2014 Thanks to Lemma 3.3-3.4, we assume that MN is a Wigner matrix with zero di-

agonal and entries (MN)i,j ⌦ C/
 

N for some C > 0 independent of i, j, N. In
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3.6. Proof of Wigner’s theorem

order to prove convergence of the empirical measure L(MN), we will study the
convergence of its Stieltjes transform. We assume throughout this paragraph
that z  C \ R such that |Im z| remains bounded away from 0, uniformly in
N. We set:

SMN (z) :=
1
N

Tr RMN (z) =
1
N

N

Â
i=1

� 1
z�MN

 

i,i
= L(MN)[�z]

where �z(x) = 1
z�x and for any matrix M, RM is the resolvent introduced in

Definition § 2.11. If M is hermitian, we have the easy bounds:

|SM(z)| ⌦ 1
N

N

Â
i=1

14
(Re z� �

(M)
i )2 + (Im z)2

⌦ 1
|Im z| ,

and:

Im (z� SM(z)) = Im z

⇣
1 +

1
N

N

Â
i=1

1

(Re z� �
(M)
i )2 + (Im z)2

⌘
.

Besides:

|⇡zSM(z)| =
⌥⌥⌥⌥⌥

1
N

N

Â
i=1

1

(z� �
(M)
i )2

⌥⌥⌥⌥⌥ ⌦
1

|Im z|2

which shows that �z has a Lipschitz constant bounded by |Im z|�2.

Stieltjes transform and almost fixed point equation

3.20 lemma. SMN (z) =
1

z�SMN (z) + DN(z) where DN(z)⇣ 0 in probability when
N ⇣ 0.

Proof. If MN is going to have a limit in some sense when N ⇣ •, its resolvent
should ”stabilize”. Reminding the recursive decomposition of the resolvent
on the diagonal (Lemma 2.12) and the simplification (MN)i,i = 0 for all i, we
have:

SMN (z) =
1
N

N

Â
i=1

1
z� vT

N,i(z�MN [i])�1vN,i
,

where MN [i] is the matrix of size (N � 1) obtained by removing the i-th col-
umn and row of MN , and vN,i is the i-th column vector of MN in which the i-th
component is removed (hence is of dimension N � 1). ”Stabilization” means
that we expect:

�N,i(z) := vT
N,i(z�MN [i])�1vN,i � SMN (z)
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3. Wigner matrices

to be small. This suggests to consider the decomposition:

SMN (z) =
1

z� SMN (z)
+ DN(z)(10)

DN(z) =
1
N

N

Â
i=1

��N,i
(z� SN(z))(z� SN(z)� �N,i(z))

,(11)

and try to show that DN(z)⇣ 0 in probability. From our preliminary remarks,
we find:

⌥⌥DN(z)
⌥⌥ ⌦ ⌦N(z)

|Im z|2 +
⌦N(z)2

|Im z|3 , ⌦N(z) := sup
1⌦i⌦N

|�N,i(z)|,

so it is enough to prove that ⌦N(z)⇣ 0 in probability.

Let ,MN [i] be the matrix of size N obtained by filling with 0’s the i-th
column and row of MN . It has the same eigenvalues as MN [i], plus an extra 0
eigenvalue with eigenvector the i-th element of the canonical basis. Therefore:

⌥⌥S ,MN [i](z)� SMN [i](z)
⌥⌥ = 1

N|Im z| +
1

(N � 1)|Im z| .

The last term is due to the fact that MN [i] is a matrix of size (N � 1), so
we normalized by 1/(N � 1) instead of 1/N the sum defining SMN [i](z). Be-
sides, ,MN [i] is a perturbation of MN by a matrix with 2N� 1 non-zero entries
bounded by C/

 
N, hence by Hofmann-Wielandt and the arguments of § 3.1

using the Lipschitz behavior of �z:

⌥⌥SMN (z)� S ,MN [i](z)
⌥⌥ ⌦ C

 
2

N1/2|Im z|2
.

The new quantity

,�N,i(z) := vT
N,iRMN [i]vN,i �

1
N

Tr RMN [i](z), ,⌦N(z) := sup
1⌦i⌦N

|�N,i(z)|

differs only from �N,i(z) by the last term, and thanks to the two last estimates,
[,⌦N(z)� ⌦N(z)]⇣ 0 in probability.

So, we are left with the problem of showing that ,⌦N(z) converges to 0
in probability. Let R[i]

N = RMN [i](z) and drop the dependence in z to shorten

notations. We can decompose ,�N,i = ,�
diag
N,i + ,�off

N,i with:

,�diag
N,i =

1
N Â

1⌦k⌦N
k �=i

�
|
 

N(MN)k,i|2 � 1
⇥
(R[i]

N )k,k,

,�off
N,i =

1
N Â

1⌦k,l⌦N
k,l,i pairwise distinct

 
N(MN)k,i

 
N(MN)l,i (R[i]

N )k,l .
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3.6. Proof of Wigner’s theorem

A first key observation is that the entries of R[i]
N depend on entries of MN that

are not in its i-th column from the entries of the i-th column of MN , hence they
are independent and the (MN)k,i and Rk,l decouple when we take expectation
values. A second key observation is that E

⇤
|
 

N(MN)k,i|2] = 1 for k �= i by
the variance condition imposed for off-diagonal elements in the definition of
Wigner matrices. Therefore, ,�diag and ,�off are centered. Our strategy is now to
prove that E

⇤
|,�•N,i|k

⌅
⇣ 0 when N ⇣ • uniformly in i for some k ↵ 2, so as

to apply Markov inequality:

P
⇤
|,�•N,i|k ↵ t

⌅
⌦ t�k E[|,�•N,i|k],

and deduce that ,�•N,i converges in probability to 0 uniformly in i, and so does
,⌦N,i, This would end the proof. It turns out that the naive choice k = 2 does
not work, but k = 4 does14.

We calculate E
⇤
|,�N,i|4

⌅
by developing the sums and using the remark about

independence:

E
⇤
|,�N,i|4

⌅
⌦ 1

N4 Â
1⌦k1,...,k4⌦N

ka �=i

E
- 4

’
a=1

�
|
 

N(MN)k,i|2 � 1
⇥.

· E
- 4

’
a=1

(R[i]
N )ka ,ka

.
.

Since the entries of (MN) are independent, and thanks to the variance con-
dition, the only non-zero terms occur when the indices of summation are
identical by pairs, i.e. when ka = kb and kc = kd for some choice of labeling
{a, b, c, d} = {1, 2, 3, 4}. Subsequently:

E
⇤
|,�N,i|4

⌅
⌦ 1

N4 Â
1⌦m1,m2⌦N

ma �=i

E
- 2

’
a=1

�
|
 

N(MN)ma ,i|2 � 1
⇥2
.
· E
- 2

’
a=1

(R[i]
N )2

ma ,ma

.
.

There are only O(N2) terms in this sum, and by the boundedness condition
on the entries of MN (for the first factor) and the assumption that Im z is
bounded away from 0 (for the second factor), each of them uniformly bounded
by constant independent of i and N. Thanks to the 1/N4 overall factor, the 4-
th moment of ,⌥diag

N,i decays as O(1/N2), hence supi ,⌥
diag
N,i converges to 0 in

probability.
The calculation for ,⌥off

N,i is similar:

E
⇤
|,⌥off

N,i|
⌅
⌦ N�4 Â

1⌦k1,l1,...,k4,l4⌦N
ka �=la

ka ,la �=i

E
- 4

’
a=1

 
N(MN)ka ,i ·

 
N(MN)la ,i

.
·E
- 4

’
a=1

(R[i]
N )ka ,la

.
.

Since the entries of (MN) are centered and independent, the only non-zero
terms occur when the indices of summation are identical by pairs. Taking into
account the condition ka �= la, this means that for any a  {1, 2, 3, 4}, there

14Fourth-order moment estimates are actually at the center of versions of Wigner’s theorem
with weaker assumptions, developed by Tao and Vu.
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3. Wigner matrices

exists {b(a), b◆(a)}  {1, 2, 3, 4} distinct from a such that ka  {kb(a), lb(a)} and
la  {kb◆(a), lb◆(a)}. Hence:

E
⇤
|,�off

N,i|4
⌅
⌦ 1

N4 Â
1⌦m1,...,m4⌦N

ma �=i

E
- 4

’
a=1

⌥⌥ N(MN)ma ,i
⌥⌥2
.

·E
-
(R[i]

N )m1,m2(R[i]
N )m2,m1(R[i]

N )m3,m4(R[i]
N )m4,m3

.
.

The first expectation value is bounded by C8, and we find:

⌥⌥E
⇤
|,�off

N,i|4
⌅⌥⌥ ⌦ C8

N4 E
⇤
|Tr (R[i]

N )2|2
⌅
.

And: ⌥⌥Tr (R[i]
N )2⌥⌥ = N

⌥⌥S ,MN [i]2(z)
⌥⌥ ⌦ N |Im z|�1.

This shows that the fourth moment of ,�N,i is O(1/N2) uniformly in i. Hence,
supi ,⌥off

N,i converges to 0 in probability.

Identifying the limit of the Stieltjes transform

3.21 lemma. E[SN(z)] converges pointwise – and SN(z) converges pointwise in
probability – to Wµsc(z) =

z�
 

z2�4
2 .

Proof. Let z  C \ R. From the approximate fixed point equation:

DN(z) = SN(z)�
1

z� SN(z)
,

we deduce that DN(z) is bounded. Let us recast the equation as

SN(z)(z� SN(z)) = 1 + DN(z)SN(z),

take the expectation value and rearrange the result:

(12) E[SN(z)]
�
z�E[SN(z)]

⇥
= 1 + E[DN(z)SN(z)] + Var(SN(z)).

Since DN(z) is bounded and converges in probability to 0, while SN(z) is
bounded, the expectation value in the right-hand side converges to 0 (point-
wise in z). Besides, we can apply the concentration result (Corollary 3.17)
to MN and the continuous function �z : x �⇣ 1

z�x . It implies that SN(z) �
E[SN(z)] converges in probability to 0. Since SN(z) is also bounded by |Im z|�1

uniformly in N, we deduce that Var(SN(z)) ⇣ 0. Therefore, in the limit N ⇣
•, the right-hand side of (12) becomes 1, and any limit point of E[SN(z)] when
N ⇣ • satisfy a quadratic equation, whose solutions are (z ±

 
z2 � 4)/2.

Now, let ⌃ > 0 be arbitrary, and U⌃ = {z  C, ±Im z ↵ ⌃}. The function
z �⇣ SN(z) is holomorphic on U⌃ and bounded by |Im z|�1 uniformly in N.
By Montel’s theorem, it has limit points for the pointwise convergence, and
the limit points are also holomorphic functions on U⌃, bounded by |Im z|�1.
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3.7. Further results

This is only compatible with the choice of � sign (for any z  U⌃) for the
squareroot. In particular, there is a unique limit point, so we have:

lim
N⇣•

E[SN(z)] =
z�
 

z2 � 4
2

.

We recognize the Stieltjes transform of the semi-circle law (Lemma 3.6).

Weak convergence of the empirical measure

By Stieltjes continuity (Theorem 3.7), the previous result (Lemma 3.21) shows
that LN = N�1 ÂN

i=1 ⌃�(MN )
i

converges in probability to the semi-circle law µsc

for the vague topology (test functions = continuous bounded with compact
support). For convergence in the weak sense, we want to upgrade it to test
functions f �= 0 that do not have compact support. We still know (Theo-
rem 3.17 and its proof) that LN [ f ] � E

⇤
LN [ f ]

⌅
converges in probability to 0

and that for any ⌥ > 0, one can choose K⌥ > 2 independent of N such that
A⌥ = {

⌥⌥�(MN)
max

⌥⌥ > K⌥
⌃

has probability less than ⌥/6|| f ||•. Let f̃ a continuous
bounded function with compact support, that coincides with f on [�K⌃, K⌃].
We write:
⌥⌥LN [ f ]� µsc[ f ]

⌥⌥ ⌦ (LN � µsc)[ f̃ ] + (LN �ELN)[ f � f̃ ] + E
⇤
LN [ f � f̃ ]

⌅
.

The last term is smaller than ⌥/3 by construction, and the second (resp. the
first) term converges to 0 in probability by concentration (by convergence in
the vague topology). So, LN [ f ]� µsc[ f ] converges as well to 0 in probability.

3.7 Further results
Lecture 7 (1h30)
October 27th, 2014Wigner’s theorem is a statement about the collective behavior of eigenvalues,

but there are many more questions that can be asked. We now describe a few
results (without proof) giving finer information on the spectrum of Wigner
matrices.

Maximum eigenvalue

From Lemma 3.19, we know that E[|�(MN)
max |] is bounded. An easy corollary of

Wigner theorem:

3.22 lemma. For any ⌃ > 0, P[�(MN)
max ⌦ 2� ⌃]⇣ 0 in the limit N ⇣ •.

Proof. Let f⌃ a continuous bounded function with compact support included
in ]2� ⌃,+•[. Multiplying f⌃ by a constant, we can assume µsc[ f⌃] = 1. Then:

P
⇤
�
(MN)
max ⌦ 2� ⌃

⌅
⌦ P

⇤
L(MN)[ f ] = 0

⌅
⌦ P[(L(MN) � µsc)[ f ] ↵ 1/2],

and the latter converges to 0 according to Wigner theorem.
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3. Wigner matrices

So, we can conclude that lim inf E[�(MN)
max ] ↵ 2, but it is not clear how to

derive an upper bound. A priori, a finite number of eigenvalues could be
detached from the right end of the support of µsc without affecting Wigner
theorem.

3.23 theorem (Bai, Yin, 1988). �(MN)
max converges almost surely to a constant c iff

E[|
 

N (MN)1,2|4] is uniformly bounded in N. In this case, c = 2.

Since �max is 1-Lipschitz (as inferred from Hofmann-Wielandt inequality),
and a convex function of the matrix entries, we also know by Talagrand con-
centration that �(MN)

max is concentrated in a region of width O(N�1/2) around
its mean. This result is not optimal, since fluctuations of �(MN)

max are usually of
order N�2/3. And, they are described by the Tracy-Widom GOE law:

3.24 theorem (Soshnikov, 1999). Assume there exists c, C > 0 independent of N
such that E[ec(MN)2

1,2/N ] is uniformly bounded in N, and that all odd moments of
(MN)1,2 vanish. Then:

P[�(MN)
max ⌦ 2 + N�2/3s

⌅
⇣ TW1(s).

This result has a generalization describing the joint distribution of the fluc-
tuation of the k largest eigenvalues for any fixed k when N ⇣ •.

There exists a more combinatorial proof of Wigner theorem based on com-
putation of moments, and exploiting the independence of the entries of Wigner
matrices. To prove Theorem 3.24, Soshnikov performed an analysis of the mo-
ments of large degree Tr (MN/2)⌃ N2/3 when N ⇣ • and ⌃ is fixed. They nat-
urally give access to the distribution of �(MN)

max at scale N�2/3 around the mean

value 2, since
�
(�+ sN�2/3)/2

⇥⌃ N2/3
= 1 + s⌃/2 + o(1) for � = 2, whereas it

decays (resp. grow) exponentially when �  [0, 2[ (resp. � > 2).

Local semi-circle law

Wigner theorem allows to probe the spectrum in windows of size O(1) when
N ⇣ •. It does not give access to the number of eigenvalues in a window of
size N�⌃ for 0 < ⌃ < 1 (mesoscopic scale), or of size 1/N (microscopic scale).
It is nevertheless true that the semi-circle law can be seen up to microscopic
scale:

3.25 theorem (Erdös, Schlein, Yau, 2008). Assume there exists c > 0 independent
of N such that E[ec(MN)2

1,2/N ] is uniformly bounded in N. Let ⌦N ⇣ 0 while ⌦N ✏
1/N, and x ]� 2, 2[. Then, the random variable:

N (x; ⌦N) =
number of eigenvalues in [x� ⌦N/2, x + ⌦N/2]

N⌦N

converges in probability to ✓sc(x) =
 

4� x2/2⇣.
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3.7. Further results

As we have seen, x �⇣ Im SN(x + i⌦N) is the density of the convolution of
the empirical measure L(MN) with a Cauchy law of width ⌦N . Allowing ⌦N ⇣
0 amounts to probing the empirical measure at mesoscopic and microsopic
scales. In our proof, we very often used bounds proportional to inverse powers
of Im z, coming with decaying prefactors of N, so we can only conclude when
⌦N ✏ O(N�⌃) for ⌃ > 0 small enough. A much finer analysis of the almost
fixed point equation is required to arrive to Theorem 3.25.

Central limit theorem

The fluctuation of linear statistics are the random variables of the form L(MN)
[ f ] =

N
�

L(MN)[ f ]�E[L(MN)[ f ]]
⇥

for test functions f . As an effect of the strong cor-
relation between eigenvalues15, this is typically of order 1 – while it would be
of order

 
N if the eigenvalues were independent r.v. More precisely, we have

a central limit theorem:

3.26 theorem (Lytova, Pastur, 2009). Let YN =
 

N(MN)1,2. Under the assump-
tions:

• E[|YN |5] is uniformly bounded in N.

• The fourth cumulant E[|YN |4]�
�
E[|YN |2]

⇥2 vanishes.

• The test function f  L2(R) is such that
&

R
(1 + |k|5) f̂ (k) < •.

Then L(MN)
[ f ] converges in law to a centered gaussian variable, with variance:

◆[ f ] =
1

2⇣2

(

[�2,2]2

dx1dx2
4� x1x24

(4� x2
1)(4� x2

2)

⇣
f (x1)� f (x2)

x1 � x2

⌘2

.

Generalization to Wishart matrices

3.27 definition. A Wishart matrix is a N ⇥ N random matrix of the form
MN,K = XN,KXT

N,K, where XN is a N ⇥ K matrix with i.i.d. entries of mean 0
and variance 1/N.

Ensembles of Wishart matrices are useful models for the statistical analysis
of large data: they can be compared to covariance matrices. If K < N, the rank
of MN is K, therefore MN has at least N�K deterministic zero eigenvalues. By
construction, MN,K are positive symmetric matrices. The methods and results
for Wigner matrices can usually be generalized to the case of Wishart matrices.
The semi-circle law is replaced by the so-called Marčenko-Pastur law:

3.28 theorem (Marčenko, Pastur, 1967). Assume K depends on N such that K/N ⇣
⇤  R⇤+ when N ⇣ •. The empirical measure L(MN,K) converges in probability for

15The configuration of eigenvalues are more ”rigid” than an i.i.d. configuration
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3. Wigner matrices

the weak topology to the probability measure:

µMP = max(1� ⇤, 0)⌃0 +

3
(b+(⇤)� x)(x� b�(⇤))

2⇣x
1[b�(⇤),b+(⇤)](x)dx,

where ⌃0 is the Dirac mass at 0, and b±(⇤) = (1 ±
 
⇤)2.
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4 Invariant ensembles: from matrices to eigenvalues

4.1 Preliminaries

We need a few unified notations the values ⌅ = 1, 2, 4. The definitions and
basic statements in the unusual case ⌅ = 4 will be reminded in § 4.6 at the
end of the chapter. We introduce:

• The fields:

K⌅ =

�
 

�

⌅ = 1 : R

⌅ = 2 : C

⌅ = 4 : H

• The classical vector spaces of matrices:

HN,⌅ = N ⇥ N

�
 

�

⌅ = 1 : symmetric
⌅ = 2 : hermitian
⌅ = 4 : quaternionic self-dual

• Their corresponding symmetry groups, i.e. the Lie groups with a left
action on HN,⌅ by conjugation:

GN,⌅ = N ⇥ N

�
 

�

⌅ = 1 : orthogonal
⌅ = 2 : unitary
⌅ = 4 : quaternionic unitary

They actually coincide with UN(K⌅). These are compact Lie groups,
since they are defined by closed condition and they are bounded in
MN(K⌅). Their tangent space at identity are the vector space of ma-
trices:

TN,⌅ = N ⇥ N

�
 

�

⌅ = 1 : antisymmetric
⌅ = 2 : antihermitian
⌅ = 4 : quaternionic, anti-self-dual

Their dimension is:

dim GN,⌅ = N + ⌅
N(N � 1)

2

We have the basic diagonalization result:

4.1 lemma. For any A  HN,⌅, there exist U  GN,⌅ and D  DN(R)  
MN(K⌅), such that A = UDU�1.

If M MN(K⌅), we denote LM (resp. RM) the left (resp. right) multiplica-
tion by M, seen as an endomorphism of MN(K⌅).

4.2 lemma. If �1, . . . ,�N are the eigenvalues of M, then in the real vector space
MN(K⌅):
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4. Invariant ensembles: from matrices to eigenvalues

• the eigenvalues of LM (resp. LM � RM) are the �i’ for i  J1, NK with multi-
plicity N⌅.

• the eigenvalues of (LM� RM) are the �i� �j for i, j  J1, NK with multiplicity
⌅.

Proof. Any M  MN(K⌅) can be written in the form M = PTP�1 with
P  MN(K⌅) invertible and T  MN(K⌅) upper triangular, with real co-
efficients �1, . . . ,�N on the diagonal. Since LM = LPLT L�1

P , LM and LT have
the same eigenvalues. We denote e(⇤) with ⇤  J1, ⌅K the canonical basis of
K⌅ considered as a real vector space, and ⇥(⇤) the dual basis. We also denote
Ei,j the canonical matrices filled with 0’s, except for a 1 at the entry (i, j). The
family of matrices

E(⇤)
i,j := e(⇤) · Ei,j, ⇤  J1, ⌅K, i, j  J1, NK

defines a basis of the real vector space MN(K⌅). We put the lexicographic
order on the triples (i, j, ⇤), and we can read in this basis the matrix of the
endomorphism LT :

⇥( )
⇤
LT(E(⇤)

i,j )k,l
⌅
= ⌃j,l ⇥

( )
⌅

⇤
Tk,ie(⇤)

⌅
.

It has zero entries when i > k, therefore it is block-upper triangular. The
eigenvalues can be read as eigenvalues of the blocks on the diagonal, i.e. the
blocks with i = k. Since Ti,i = �i is real and the entries vanish if j �= l, these
blocks are actually diagonal, and the diagonal elements are:

⇥(⇤)
⇤
LT(E(⇤)

i,j )i,j
⌅
= �i.

Since the rows/columns of the blocks are indexed by j  J1, NK and ⇤  J1, ⌅K,
the eigenvalue �i appears N⌅ times.

If we want to find the spectrum of LM � RM, we observe that left and
right multiplication always commute, and we write LM � RM = LPR�1

P (LT �
RT)RPL�1

P . Therefore, we only need to find the spectrum of LT � RT . The
matrix elements of RT are:

⇥( )
⇤
RT(E(⇤)

i,j )k,l
⌅
= ⌃i,k⇥

( )⇤e(⇤)Tj,l
⌅
,

which is zero when j > l. Arguing as for LT , we find that this matrix is upper-
triangular, with diagonal elements:

⇥(⇤)
⇤
LT(E(⇤)

i,j )i,j
⌅
= �j.

Observe that we used the same basis to bring LT and RT to upper-triangular
form, so we can conclude that (�i � �j) for i, j  J1, NK repeated ⌅ times (one
for each index ⇤) are the eigenvalues of LT � RT .
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4.2. Diagonalization

4.2 Diagonalization
Lecture 8 (1h30)
October 28th, 2014If F : HN,⌅ ⇣ C is invariant under conjugation by GN,⌅, it means that f (M)

only depends on the eigenvalues of M, and we identify it with a function
f : RN ⇣ C, with same regularity as F. If we want to integrate F over a
space of matrices, we should then be able to integrate out the eigenvectors.
This leaves us with a remarkable form for the integration over eigenvalues:

4.3 theorem. There exists a universal constant vN,⌅ > 0, such that, for any smooth
function f on HN,⌅ with exponential decay at infinity,

(

HN,⌅

dM F(M) =
vN,⌅

N!

(

RN

N

’
i=1

d�i ’
1⌦i<j⌦N

|�i � �j|⌅ f (�1, . . . ,�N).

Although writing a neat proof requires setting up a bit of differential ge-
ometry, it should not hide the key point, which is the computation of a Ja-
cobian of the change of variable from the entries of a matrix to its eigenval-
ues and eigenvectors. Differentiating naively M = UDU�1, we get ⇡M =
[(⇡U)U�1, M] +U · dD ·U�1, and we need to compute the determinant of the
operator

(u, d) �⇣ U
�
[u, D] + d

⇥
U�1

in suitable vector spaces and basis. If the reader wants to avoid the technical
aspects of the proof, I advise to jump directly to (14). As a matter of fact, the
constant can be identified:

(13) vN,⌅ =
Vol(GN,⌅)

[Vol(G1,⌅)]N
.

once the notion of Riemannian volume for submanifolds of MN(K⌅) is prop-
erly defined. This is done at the end of proof of Theorem 4.3, and requires
elementary knowledge of Riemannian geometry.

4.4 corollary. If M is a random matrix whose entries joint p.d.f. is Z�1
N,⌅ dM F(M)

where F is a non-negative function, then the joint p.d.f. for the ordered eigenvalues
�1 ↵ · · · �N is

vN,⌅

N! ZN,⌅

N

’
i=1

d�i ’
1⌦i<j⌦N

⌥⌥�i � �j
⌥⌥⌅ f (�1, . . . ,�N).

Proof of Theorem 4.3

In a vector space V with a canonical, ordered, basis (like HN,⌅ or RN), the
Lebesgue volume form �V

Leb is the ordered exterior product of dual basis of
linear forms. We will drop V and just write �Leb since the relevant vector
space can be read obviously from the context. We wish to compute IN,⌅[ f ] =&
HN,⌅

�Leb f .

Matrices M  HN,⌅ can be diagonalized in the form M = UDU�1, where
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4. Invariant ensembles: from matrices to eigenvalues

U  GN,⌅ is a matrix of eigenvectors, and D  DN(R) is a diagonal matrix
whose entries are the eigenvalues �1, . . . ,�N  R. M = VD◆V�1 is another
decomposition iff there exists a permutation matrix P  SN such that D◆ =
PDP�1, and the matrix U�1VP  GN,⌅ commute with D. If the eigenvalues
are simple16, it means that U�1VP is a diagonal matrix, i.e. an element of G N

1,⌅.
To compute IN,⌅[ f ], it suffices to integrate f�Leb over the subset (HN,⌅)D of
matrices with simple eigenvalues, since it is open and dense in HN,⌅. Let us
denote (RN)D the set of vectors in RN with pairwise distinct components
in increasing order, that we identify with diagonal matrices with simple and
ordered eigenvalues. The previous argument shows that the smooth map:

F : (RN)D ⇥ GN.⌅ �⇣ (HN,⌅)D

(D, U) ��⇣ UDU�1

is a fibration whose fiber is the Lie group G N
1,⌅. This group is naturally embed-

ded as a closed subgroup of GN,⌅, and acts by right multiplication on GN,⌅, so
the quotient ,GN,⌅ = GN,⌅/G N

1,⌅ is smooth. If we denote ⇣ the map projecting
to the quotient, we have a commutative diagram of smooth maps:

(RN)D ⇥ GN,⌅ (HN,⌅)D

BN,⌅ = (RN)D ⇥ ,GN,⌅

⇣
,F

F

and the induced map ,F is a smooth diffeomorphism between (RN)D ⇥ ,GN,⌅
and (HN,⌅)D. The tangent space of (RN)D ⇥ GN,⌅ at the point (D, U) is iden-
tified with RN ⌅ TidLU(TN,⌅), and the differential of ⇣ sends it onto RN ⌅
LU(T

(0)
N,⌅), where the latter is the set of matrices in TN,⌅ with vanishing diag-

onal. We then compute the differential:

T(D,U)
,F : RN ⌅ TidLU(T

(0)
N,⌅) �⇣ HN,⌅

�
d , u) ��⇣ U

�
(RD � LD)[u] + d

⇥
U�1(14)

and the Jacobian we need to compute is the determinant of this operator in
the canonical basis for the source and the target vector spaces. It has the same
determinant as the operator (u, d) �⇣ (RD � LD)[u] + d in canonical basis. The
target space (and its canonical basis) splits into purely diagonal and purely
off-diagonal elements:

HN,⌅ = H
diag

N,⌅ ⌅H off
N,⌅,

16The commutant of D in general is the subgroup of GN,⌅ leaving stable all the eigenspaces
of D: if the eigenvalues are not simple, some eigenspaces have dimension larger than 1 and the
commutant contains more than just diagonal matrices.
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4.2. Diagonalization

and we observe – directly or reminding the proof of Lemma 4.2 – that

(RD � LD)(H
diag

N,⌅ ) = 0,

while RD � LD restricted to H off
N,⌅ has the eigenvalues (�j� �i) for 1 ⌦ i < j ⌦

N repeated ⌅ times. Therefore, the operator takes an upper-triangular form,
and we have:

(15) det[T(D,U)
,F] = ’

1⌦i<j⌦N
(�j � �i)

⌅.

In particular, the absolute value of (15) is the Jacobian, and it does not depend
on U. Since the eigenvalues are labeled in increasing order in (RN)D, the sign
of this expression is positive, meaning that the orientations of ,F

⇤
(RN)D ⇥

,GN,⌅
⌅

and (HN,⌅)D coincide. Therefore, we have:

(16) IN,⌅[F] =
(

(RN)D⇥ ,GN,⌅

(F ⌃ ,F) (,F⇤�Leb) =
� (

(RN)D

f�Leb

 � (

,GN,⌅

,WN,⌅

 
.

We have used Fubini theorem in the second expression. Since our assumption
on F implies that f does not depend on the order of eigenvalues, we can also
symmetrize this formula, and add to the integral the zero contribution coming
from maybe non-distinct eigenvalues:

IN,⌅[F] =
vN,⌅

N!

(

RN

f ’
1⌦i<j⌦N

⌥⌥�i � �j
⌥⌥⌅ �Leb, vN,⌅ :=

(

,GN,⌅

,WN,⌅.

Identification of the constant (13)

The proof can be continued to identify the geometric meaning of the constant
vN,⌅. The volume form ,WN,⌅ (at the point U) that appear in the derivation

of (16) is the pull-back by TidLU of the Lebesgue volume form at 0 on T (0)
N,⌅ .

We remark that the Lebesgue volume form on a vector space (considered
as a manifold) equipped with a canonical basis is the Riemannian volume
form for the canonical flat metric on that manifold. This applies to MN(K⌅),

TN,⌅ and T (0)
N,⌅ . One can also check that if U  GN,⌅, the diffeomorphism

LU acts on those spaces as an isometry for the canonical metric. Therefore,
if we complete the canonical basis of T (0)

N,⌅ by adding elements w1, . . . ,wr

to obtain the canonical basis of MN(K⌅), LUw1, . . . , LUwr is an orthonormal
frame for ,GN,⌅ considered as a submanifold of MN(K⌅). Combining all those
observations:

[WN,⌅]U(u1, . . . , ut) = �
MN(K⌅)
Leb (u1, . . . , ut,w1, . . . ,wr)

is the Riemannian volume form for the metric on ,GN,⌅  MN(K⌅) induced by
the canonical metric on MN(K⌅). Consequently, vN,⌅ is indeed the Rieman-
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4. Invariant ensembles: from matrices to eigenvalues

nian volume of ,GN,⌅ considered as a submanifold of the Riemannian manifold
MN(K⌅). Similarly:

• the volume form WN,⌅ (at the point U) defined as the push-forward by
LU of the Lebesgue volume form at 0 of TN,⌅, must coincide with the
Riemannian volume form of the submanifold GN,⌅  MN(K⌅).

• WN,⌅ can be written – as one checks on the tangent space at identity and
push-forward with LU :

[,WN,⌅]U(u1, . . . , ur) = [WN,⌅]U(u1, . . . , ur, e1, . . . , eN),

where e1, . . . , eN is an orthonormal basis consisting of diagonal matrices
that complete the canonical basis of T (0)

N,⌅ to the canonical basis of TN,⌅.

• One can check that the diffeomorphism RU is an isometry of MN(K⌅)

for any U  GN,⌅. A fortiori, for any U  G N
1,⌅  GN,⌅, RU acts by isome-

tries on the submanifold GN,⌅  MN(K⌅) equipped with the induced
metric.

All in all, the quotient map ⇣ : GN,⌅ ⇣ ,GN,⌅ is a smooth fibration whose
fibers are isometric G N

1,⌅’s. Therefore, we have a further decomposition, using
Fubini and naturality of the embedding G N

1,⌅ �⇣ GN,⌅:

(

GN,⌅

WN,⌅ =
� (

,GN,⌅

,WN,⌅

 � (

G N
1,⌅

W�N
1,⌅

 
,

which turns into the claimed (13). Remark: Since both LU and RU act by
isometries on MN(K⌅), this is also true for the Riemannian submanifold GN,⌅,
which is a compact Lie group. It is a classical (and usually non constructive)
theorem that there exists a unique left and right invariant Riemannian metric
on a compact Lie group for which the total volume of the group is 1: it is
called the Haar metric. Therefore WN,⌅ is proportional to the Haar measure –
and provides the quickest way to compute it.

Eigenvalues joint p.d.f.

Let F : HN,⌅ ⇣ R be an integrable smooth function on HN,⌅ invariant under
conjugation by GN,⌅. So, F(M) depends only on the eigenvalues of M, and we
denote f : RN ⇣ R the corresponding symmetric function of N variables.
We have shown:

ZN,⌅[F] =
(

HN,⌅

F�Leb = vN,⌅

(

(RN)D

f �Leb

The joint p.d.f of the eigenvalues ✓ – if it exists – is characterized as the smooth
function defined on:

(RN)D = {�  RN , �1 ⌦ · · · ⌦ �N},
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4.3. The Selberg integral

such that, for any continuous bounded function g with compact support:

(

(RN)D

g(�) ✓(�)
N

’
i=1

d�i =
ZN,⌅[FG]

ZN,⌅[F]
.

We identify:

✓(�1, . . . ,�N) =
N

’
i=1

f (�1, . . . ,�N) ’
1⌦i<j⌦N

⌥⌥�i � �j
⌥⌥⌅.

4.3 The Selberg integral
Lecture 9 (1h30)
November 3rd, 2014We will see in Chapter 5 that many exact computations can be done in the

invariant ensembles, i.e. ⌅  {1, 2, 4}. The Selberg integral is one of the few
explicit computations that can be done for arbitrary values of ⌅

IN(a, b, ) =
(

[0,1]N

⌥⌥D(�1, . . . ,�N)
⌥⌥2 

N

’
i=1

�a�1
i (1� �i)

b�1d�i,  = ⌅/2.

4.5 theorem. Let N ↵ 1 and a, b,  C such that Re a > 0, Re b > 0 and
Re > max[�1/N,�Re a/(N � 1),�Re b/(N � 1)]. The integral converges and
is equal to:

IN(a, b, ) =
N

’
m=1

G(1 + m )
G(1 +  )

G
�
a +  (m� 1)

⇥
G
�
b +  (m� 1)

⇥

G
�
a + b +  (N + m� 2)

⇥ .

Various formulas can be derived by taking limits in a and b. The most
useful one is:

4.6 corollary (Selberg Gaussian integral).

(

RN

⌥⌥D(�1, . . . ,�N)
⌥⌥⌅

N

’
i=1

e�c�2
i /2d�i = (2⇣)N/2 c�(N/4)(⌅(N�1)+2)

N

’
m=1

G(1 +  m)
G(1 +  )

.

The dependence in c in this formula is obvious by rescaling the integration
variables.

Proof of Theorem 4.5

We follow Selberg’s original proof. The strategy is to prove the result for in-
teger  , and then extending it by results of analytic continuation. For N = 1,
this is the well-known Euler Beta integral:

I1(a, b, ) =
1(

0

d� �a�1(1� �)b�1 =
G(a)G(b)
G(a + b)

.
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Let us start with the intermediate formula:

4.7 lemma. For any   N, there exists a constant cN( ) independent of a and b
such that:

(17) IN( ) = cN( )
N

’
m=1

G
�
a +  (m� 1)

⇥
G
�
b +  (m� 1)

⇥

G
�
a + b +  (N + m� 2)

⇥ .

Proof. We will exploit the symmetries of the problem. Since  is an integer, the
factor |D(x1, . . . , xN)|2 is a polynomial, which is symmetric in its N variables,
and homogeneous of degree  N(N � 1). Firstly, let us decompose it:

(18)
⌥⌥D(�1, . . . ,�N)

⌥⌥ = Â
j1+···jN

= N(N�1)
j1⌦···⌦jN

c(N)
j1,...,jN

�
j1
1 · · · �jN

N + · · ·

where the · · · means that we add the terms obtained by symmetrizing in the
�’s. We make the simple observation that jN ⌦  (N � 1), since the sum of j’s
is equal to  N(N � 1) and jN is their maximum. Secondly, if m  J1, NK, we
can also factor a Vandermonde determinant of the m first variables, so there
exists a polynomial Pm,N(�1, . . . ,�N) such that:

⌥⌥D(�1, . . . ,�N)
⌥⌥2 =

⌥⌥D(�1, . . . ,�m)
⌥⌥2 PN,m(�1, . . . ,�N)

=
�

Â
k1+···+km
= m(m�1)
k1⌦···⌦km

c(m)
k1,...,km

m

’
i=1

�ki
i + · · ·

 
PN,m(�1, . . . ,�N).

We deduce that the c(m)
k1,...,km

contribute to c(N)
j1,...,jN

for ki ⌦ ji. In particular, we de-
duce from our simple remark that the non-zero terms appearing in (19) must
have  (m� 1) ⌦ jm, for any m. Thirdly, we notice the palindromic symmetry:

⌥⌥D(�1, . . . ,�N)
⌥⌥2 =

- N

’
i=1

�
2 (N�1)
i

.⌥⌥D(1/�1, . . . , 1/�N)
⌥⌥2 

= Â
⇥1+···+⇥N
= N(N�1)
⇥1⌦···⇥N

c(N)
⇥1,...,⇥N

N

’
i=1

�
2 (N�1)�⇥i
i + · · ·

and this shows that ⇥i = 2 (N� 1)� ji for some collection of j’s appearing in
(18). Using the same argument as before, we conclude to the bounds:

(19) ⌫m  J1, NK,  (m� 1) ⌦ jm ⌦  (N + m� 2)

for the indices appearing in (18). If we plug this expansion into the Selberg
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integral, we obtain a linear combination of a product of N Euler Beta integrals:

IN(a, b, ) = Â
j

c(N)
j

N

’
m=1

G(a +  jm)G(b)
G(a + b + jm)

.

The strategy is then to factor out as much as possible of the Gamma functions
– using the bound (19) – , so that the remaining factor is a polynomial in
a. This procedure breaks the symmetry between a and b that is seen by the
change of variable �’s �⇣ (1� �)’s:

(20) IN(a, b, ) = IN(b, a, ).

So, we also factor out the corresponding terms in b to respect the symmetry:

IN(a, b, ) =
� N

’
m=1

G
�
a +  (m� 1)

⇥
G
�
b +  (m� 1)

⇥

G
�
a + b + (N + m� 2)

⇥
�

QN(a, b, )
RN(b, )

,

with:

QN(a, b, ) = Â
j1,...,jN

c(N)
j1,...,jN

N

’
m=1

G(a + jm)
G
�
a +  (m� 1)

⇥
G
�
a + b +  (N + m� 2)

⇥

G(a + b +  jm)
,

RN(b, ) =
N

’
m=1

G
�
b +  (m� 1)

⇥

G(b)
.

As we desired, the outcome of this decomposition is that QN and RN are
polynomials in their variables a and/or b. Since ÂN

m=1 jm =  N(N � 1), we
count:

degb QN(a, b, ) ⌦
N

Â
m=1

�
 (N + m� 2)� jm

⇥
=  

N(N � 1)
2

,

degb RN(b, ) =
N

Â
m=1

 (m� 1) =  
N(N � 1)

2
.

The first line is an inequality and maybe not an equality because cancellations
of terms could occur from the sum over ji’s. Since a and b play a symmetric
role in IN , we must have:

cN(a, b, ) :=
QN(a, b, )

RN(b, )
=

QN(b, a, )
RN(a, )

.

The previous identity can be rewritten:

QN(a, b, )RN(a, ) = QN(b, a, )RN(b, ),

and we observe that the left-hand side has degree smaller or equal to  N(N�
1)/2 in b. Since RN(b, ) on the right-hand side already has degree  N(N �
1)/2, it shows that QN(b, a, ) actually does not depend on b. Hence cN(a, b, )
does not depend on b, and the same reasoning if we exchange a and b shows
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that cN(a, b, ) := cN( ) depends neither on a nor on b.

To compute cN( ), we will prove a recursion in N for the Selberg integral
with special values of a and b.

4.8 lemma. For N ↵ 2, we have:

IN(1, 1, ) =
IN�1(1, 1 + 2 , )

1 +  (N � 1)
.

Proof. Since the integrand is symmetric in its N variables, the integral over
[0, 1]N is N times the integral over the N-uples (�1, . . . ,�N) such that �i ⌦ �1
for i  J2, NK:

IN(1, 1, ) = N
1(

0

d�1

(

[0,�1]N�1

N�1

’
i=1

d�i
⌥⌥D(x2, . . . , xN)

⌥⌥2 .

We exploit the homogeneity of the Vandermonde and rescale yi = �i/�1 for
i  J2, NK to find:

IN(1, 1, ) = N
1(

0

d�1�
N�1+ N(N�1)
1

(

[0,1]N�1

N

’
i=2

dyi (1� yi)
2 ⌥⌥D(y2, . . . , yN)

⌥⌥2 

and the first integral is factored out and easy to compute.

If we insert Lemma 4.7 in both sides of the equality in Lemma 4.8, we
obtain after simplification:

cN( ) =
G(1 +  N)
G(1 +  )

cN�1( ).

With the initial condition c1( ) = 1 that can be identified by comparing
Lemma 4.7 with the Euler Beta integral, we deduce:

cN( ) =
N

’
m=1

G(1 +  m)
G(1 +  )

,

and the value of Selberg integral (17) for all   N.
We would like to extend this formula to ”all possible values” of  . Let us

denote f ( ) = IN(a, b, ), and g( ) the function of  in the right-hand side
of (17). f and g are obviously holomorphic functions on:

C+ := {  C, Re > 0},

and continuous on C+. f is uniformly bounded on C+, since:

⌥⌥ f ( )
⌥⌥ ⌦

(

[0,1]N

N

’
i=1

d�i �
Re a�1
i (1� �i)

Re b�1 =
-G(Re a)G(Re b)

G
�
Re(a + b)

⇥
.N
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4.3. The Selberg integral

It is also true that g is uniformly bounded on C+, although that requires
some more calculus. This is more than enough to apply Carlson’s theorem
(Theorem 4.12 in § 4.5), and conclude that f ( ) = g( ) over the domain of
definition and analyticity of these two functions – which contains C+. Let us
now justify:

4.9 lemma. g( )  O( �N/2) when  ⇣ • in C+.

Proof. We write in an obvious decomposition g( ) = ’N
m=1 gm( ), and com-

pute the asymptotics of the factors by Stirling formula. The result is:

gm( ) �
 ⇣•

Cm  �1/2
- mm(m� 1)2(m�1)

(N + m� 2)N+m�2

. 
e( ln � )(2m�1�N).

for some irrelevant constant Cm > 0, and we remind the convention 00 = 1. In
the product over m  J1, NK, this last factor disappears since ÂN

m=1(2m� 1�
N) = 0, and we find:

g( ) �
 ⇣•

C  �N/2
- N
�
4(1� 1/N)

⇥N�1

N�1

’
m=2

mm(m� 1)m�1(N �m)N�m

(N + m� 2)N+m�2

. 
.

To arrive to this form, we have performed the change of index m ⇣ N �m in
one of the product ’N

m=1(m� 1)m�1, and put apart contributions from m = 1
and m = N. We need to check that the quantity in the brackets is smaller than
1 in order to prove that g is bounded. Since N ↵ 2, it is obvious that:

N
�
4(1� 1/N)

⇥N�1 ⌦ N 2�(N�1) ⌦ 1

Let us set:

�(x) := x ln x+(x� 1) ln(x� 1)+ (N� x) ln(N� x)� (N + x� 2) ln(N + x� 2).

It is less obvious but we now justify that �(x) ⌦ 0 for x  [2, N � 1] and
N ↵ 2. Indeed, we calculate the second derivative:

�◆◆(x) =
x2 + N(N � 2)(2x� 1)

x(x� 1)(N � x)(N + x� 2)
> 0.

We see that �(x) is convex, so it must achieves its maximum on the boundary
of its domain, i.e. x = 2 or x = N � 1. And we have:

�(2) = 2 ln 2 + (N � 2) ln(N � 2)� N ln N

= N
- 2

N
ln
� 2

N

 
+

N � 2
N

ln
�N � 2

N

 .
< 0

and similarly:

�(N� 1) = (N� 1) ln(N� 1) + (N� 2) ln(N� 2)� (2N� 3) ln(2N� 3) < 0.
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4. Invariant ensembles: from matrices to eigenvalues

Domain of analyticity of the Selberg integral

We would like to determine the maximal domain on which IN(a, b, ) is an
absolutely convergent integral for complex-valued a, b and  . The integrability
at xi ⇣ 0 or 1 imposes Re a > 0 and Re b > 0, and let us assume these two
conditions are fulfilled. When Re < 0, we have to estimate the contribution
to the integral of a vicinity of the �1 = �2 = . . . = �N , at (still !) at the vicinity
of the boundary of [0, 1]N . We shall focus on the diagonal, and leave the study
at the boundaries to the reader. Let us fix ⌦ > 0, and:

D(⌥) :=
⇧
�  [⌦, 1� ⌦]N , ⌫i, j  J1, NK, i �= j ✓ |�i � �j| > ⌥

⌃
.

IN(a, b, ) is absolutely convergent in [⌦, 1� ⌦]N on the diagonal when:

J (⌥) =
(

D(⌥)

N

’
i=1

d�i �
Re a�1
i (1� �i)

Re b�1⌥⌥D(�1, . . . ,�N)
⌥⌥2Re 

remains bounded when ⌥ ⇣ 0. For any m  J1, N(N � 1)/2K, we introduce
Fm(⌥)  [⌦, 1� ⌦]N the set of �’s such that there exists a subset J  J1, NK
with m elements, for which:

• for any i  J, there exists j  J such that |�i � �j| ⌦ ⌥.

• for any i / J and any j  J1, NK, |�i � �j| > ⌥.

Fm(⌥) is a measurable set with Lebesgue volume satisfying:

c ⌥m�1 ⌦ Vol(Fm(⌥)) ⌦ c◆⌥m�1

for some constants c, c◆ > 0 independent of ⌥. We observe:

D(⌥/2) \ D(⌥) = D(⌥/2) ⇢
� N)

m=0
Fm(⌥)

 
.

And for �  D(⌥/2) ⇢ Fm(⌥), we can estimate:

⌥N(N�1)Re ⌦ ’
1⌦i<j⌦N

|�i � �j|2Re ⌦ (⌥/2)2mRe ⌥(N(N�1)/2�m)2Re .

Therefore:

C ⌥N�1+N(N�1)Re ⌦ J (⌥/2)� J (⌥) ⌦ C◆ ⌥N�1+N(N�1)Re 

for some constants C, C◆ > 0 independent of ⌥. Applying this double in-
equality to ⌥ = 2�⇥ and summing over ⇥, we conclude that J (⌥) remains
bounded iff 1 + N Re < 0, which is one of the three integrability conditions
announced.
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4.4. Consequence: volumes of symmetry groups

Proof of Corollary 4.6

Consider a = b = 1 + cL2/8 and perform the change of variables xi = 1/2 +
�i/L, in the limit L ⇣ •. We have:

fL(�) =
⇤
(1/2 + �/L)(1/2� �/L)

⌅cL2/8 �
L⇣•

4�cL2/8 e�c�2/2,

and therefore:

IN(1 + cL2/8, 1 + cL2/8, )

= L�N(1+ (N�1))
(

[�L/2,L/2]N

N

’
i=1

d�i fL(�i)
⌥⌥D(�1, . . . ,�N)

⌥⌥2 

� L�N(1+ (N�1)) 4�NcL2/8
(

RN

N

’
i=1

d�i e�c�2
i /2 ⌥⌥D(�1, . . . ,�N)

⌥⌥2 .

The constant prefactor in the right-hand side is the Gaussian Selberg integral
we want to calculate. We need to compute the asymptotics of the Selberg
integral in the first line using its expression in terms of Gamma functions, and
the Stirling formula. This leads after simplification to the announced result.

4.4 Consequence: volumes of symmetry groups
Lecture 10 (1h30)
November 10th, 2014On the other hand, for ⌅  {1, 2, 4}, this integral is – up to the volume factor

vN,⌅/N! – the partition function of the Gaussian invariant ensembles, which
can be computed independently since the elements of the matrices are decou-
pled. As a by-product, we obtain an expression for the volume of the symme-
try groups:

4.10 theorem.

Vol[UN(R)] =
⇣N(N�3)/4 N!

’N
m=1 G(1 + m/2)

,(21)

Vol[UN(C)] =
⇣N(N+1)/2 N!

’N
m=1 m!

,(22)

Vol[UN(H)] =
⇣N(N+3/2) N!
’N

m=1(2m)!
.(23)

Proof. According to diagonalization (Theorem 4.3), the Gaussian Selberg inte-
grals for ⌅  {1, 2, 4} coincide with:

ZGauss
N,⌅ :=

(

HN,⌅

dM e�Tr M2/2

=
Vol[UN(K⌅)]

N! VolN [U1(K⌅)]

(

RN

⌥⌥D(�1, . . . ,�N)
⌥⌥⌅

N

’
i=1

e�c⌅�2
i /2d�i,
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4. Invariant ensembles: from matrices to eigenvalues

where c1 = c2 = 1, and c4 = 2 since quaternionic self-dual matrices consid-
ered as 2N ⇥ 2N matrices have eigenvalues �1, . . . ,�N of even multiplicity.
U1(K⌅) is just the unit spheres of K⌅ : for ⌅ = 1, this is {±1} and has volume
2 ; for ⌅ = 2, this is the unit circle in C, which has volume 2⇣. For ⌅ = 4,
this is S3 and has volume 2⇣2. Eventually, the right-hand side is a product of
one-dimensional integrals, namely:

ZGauss
N,⌅ =

N

’
i=1

� (

R

dMi,i e�M2
i,i/2
 

’
1⌦i<j⌦N

⌅

’
⇤=1

� (

R

dM(⇤)
i,j e�(M(⇤)

i,j )2 

= ⇣N/2 (2⇣)⌅N(N�1)/2.(24)

The last factor comes from the fact that off-diagonals terms of a matrix in
HN,⌅ are elements of K⌅, hence consist of ⌅ independent real coefficients.
Comparison with Selberg formula and some easy algebra put the result in the
announced form.

We will see in Chapter 5 that there is actually a simpler – but more mirac-
ulous – way to compute these integrals for ⌅  {1, 2, 4} than Selberg’s. It gives
another proof of Theorem 4.10.

4.5 Appendix: Phragmén-Lindelöf principle and applications

The Phragmén-Lindelöf principe is a classical but very useful result in com-
plex analysis, showing that in the world of analytic functions, strong upper
bounds on the boundary of a domain, and loose upper bounds inside, can be
improved to strong upper bounds everywhere. If U is an open set of C, we
denote C (U) the set of holomorphic functions on U that are continuous on U.
For a < b, we denote Sa,b  C be the sector between the angles a and b.

4.11 theorem (Phragmén-Lindelöf principle). Let f  C (Sa,b). Assume there
exist A, B > 0 satisfying:

• for any z  ⇡Sa,b, we have | f (z)| ⌦ 1 ;

• there exist A, B > 0 and d ]0,⇣/(b � a)[ such that, for any z  Sa,b, we
have | f (z)| ⌦ AeB|z|d ;

Then | f (z)| ⌦ 1 for any z  Sa,b.

Proof. After a rotation, we can always assume b = �a = ⌘/2. Let us fix ⌥ > 0
and d < c < ⇣/⌘, and consider z = rei� with �  [a, b]. For z  ⇡Sa,b, we have
the strong bound | f̃ (z)| ⌦ e�⌥rc cos(c⌘/2) ⌦ 1, for the condition c < ⇣/⌘ implies
cos(c⌘/2) > 0. For z  Sa,b, we rather have | f̃ (z)| ⌦ Ae�⌥rc cos(c�)+Brd , where
cos(c�) > 0 and d < c according to our choice of c. Therefore, f̃ (z) decays
when z ⇣ • in Sa,b. According to the maximum modulus principle, | f̃ (z)|
must reached its maximum for z  ⇡Sa,b, which means that | f̃ (z)| ⌦ 1 for any
z  Sa,b. Taking the limit ⌥⇣ 0, we deduce | f (z)| ⌦ 1 for any z  Sa,b.
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4.5. Appendix: Phragmén-Lindelöf principle and applications

Let C+ = S�⇣/2,⇣/2 be the right-half plane. If two functions f , g  C (C+)
coincide on all integers, it is not necessarily true that f = g, as we could
have e.g. f (z) = g(z) + sin(⇣z). But we add the assumption that f � g grows
slightly less than sin(⇣z), it becomes true. For instance, this type of result
allows – sometimes – to justify or explain the failure of the replica method in
statistical physics. Here, we applied it to show that the expression found the
Selberg at all integers is valid in all C+.

4.12 theorem (Carlson’s theorem). Let f  C (S�⇣/2,⇣/2). Assume that f van-
ishes on N, and the existence of c < ⇣ such that, for any z  Sa,b, we have
| f (z)| ⌦ Aec|z|. Then f = 0.

Proof. Since f has at least a simple zero at all integers,

f1(z) :=
f (z)

sin(⇣z)
,

still defines an element of C (C+). Let us examine upper bounds for | f1|.
Though f1 has a finite value at all integers, we need to show that those val-
ues do not grow too quickly. For this purpose, we observe that the function
s(z) = 1/ sin(⇣z) decays like O(e�⇣|Im z|) when z  C+ and Im z ⇣ •. If
k  N, we denote Gk the circle of radius k + 1/2, and U  C+ the subset of
points at distance less than 1/4 from

'
k↵0 Gk. Since s remains bounded on U,

we have | f1(z)|  O(ec|z|) uniformly for z  U. But since f1 decays exponen-
tially at infinity on G, we can use Cauchy residue formula for any z  C+ such
that k� 1/2 < |z| < k + 1/2:

f1(z) =
(

G̃k

d⇠
2i⇣

f1(⇠)
⇠ � z

,

where the contour is:

G̃k = Gk ⇡
⇤
i(k + 1/2), i(k� 1/2)

⌅
⇡ (�Gk�1) ⇡

⇤
� i(k� 1/2),�i(k + 1/2)

⌅
.

This shows that | f1(z)|  O(ec(k+1/2)) for k� 1/2 < |z| < k + 1/2 uniformly
in k, and therefore | f1(z)|  O(ec|z|) in the whole C+. To summarize, | f1(z)|
decays as O(e�⇣|Im z|) along the imaginary axis, while it is bounded by O(ec|z|)
of the right-half plane. We will show that f1 must be zero.

To come closer to the framework of Phragmén-Lindelöf principle (=PL),
we define:

f2(z) := e�[c�i(⇣�c)]z f1(z).

This new function is tailored to be uniformly bounded on the imaginary axis
and on the positive real axis, while it is O(ec◆ |z|) for some constant c◆ > 0.
Since the power of |z| in the exponential is 1 < ⇣/(2/⇣), we can apply PL to
f2 in each quarter plane S0,⇣/2 and S�⇣/2,0 and find that:

⌫z  C+, | f2(z)| ⌦ A
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4. Invariant ensembles: from matrices to eigenvalues

for some uniform constant A. Remarkably, this reasoning is valid whatever
the value of c◆ is. We exploit this fact by setting, for M > 0:

(25) f3(z) := eMz f2(z).

We have, for z = rei� in the right half-plane:

| f3(z)| ⌦ A◆e
⇤
(M+c) cos ��(⇣�c)| sin �|

⌅
r = e�BM sin(|�|��M)r

for an irrelevant BM > 0, and with �M = arctan[(M + c)/(⇣ � c)]. It shows
that:

⌫z  S�M ,⇣/2 ⇡ S�⇣/2,��M , | f3(z)| ⌦ A,

and we stress that A is independent of M. In particular,| f3(z)| is bounded
by A in the directions � = ±�M. Besides, we still have | f3(z)| ⌦ AeB|z| for
z  S��M ,�M . For M large enough, the width of this angular sector is strictly
larger than ⇣/2, so we can apply PL to conclude that | f3(z)| ⌦ A in this sector,
and thus:

⌫z  C+, | f3(z)| ⌦ A.

Reminding (25), we obtain that f2 � 0 taking the limit M ⇣ •.

4.6 Appendix: quaternions and quaternionic matrices

The algebra of quaternions

The algebra of quaternion is denoted H. It is defined as an algebra over R by
the following properties:

• As a real vector space, it is spanned by 4 independent vectors, denoted
1 (the unit of the algebra), I, J and K.

• The generators satisfy the relations IJ = �JI = K and the ones obtained
by cyclic permutations of (I, J, K).

One readily checks this algebra is associative. Any q  H can be decomposed:

q = q(1) · 1 + q(I) · I + q(J) · J + q(K) · K, q(1), q(I), q(J), q(K)  R.

It is equipped with an R-linear involution q �⇣ q:

q = q(1) · 1� q(I) · I� q(J) · J� q(K) · K,

q is called the dual quaternion of q, and one can check the property q1q2 =
q2q1. We say that q is scalar (resp. purely quaternionic) if q = q (resp. q =
�q). For instance, I, J, K are purely quaternionic. The euclidean norm on H

considered as a vector space has the remarkable property to be multiplicative:

|q1q2| = |q1| · |q2|.

So, the unit sphere of quaternions for this norm – denoted U1(H) – forms a
group.
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4.6. Appendix: quaternions and quaternionic matrices

We can also consider the algebra of complex quaternions17 H ⇧ C, i.e.
elements of the form (4.6) with q•  C. The definition of the dual is extended
by linearity, the euclidian norm is replaced by the hermitian norm, and all the
properties mentioned above continue to hold.

Representation by 2⇥ 2 matrices

It is possible to realize H as a subalgebra of M2(C). We consider the endo-
morphism of vector spaces Q1 : H ⇣M2(C) defined by Q1(1) = 1 and:

Q1(I) =
⌦

1 0
0 �1

↵
, Q1(J) =

⌦
0 1
�1 0

↵
= J1, Q1(K) =

⌦
0 i
i 0

↵
.

In other words:

Q1(q) =

⇣
q(1) + iq(I) q(J) + iq(K)

�q(J) + iq(K) q(1) � iq(I)

⌘
.

One can check that the relations between generators are preserved, so Q1 is
an morphism of algebras. It is clearly injective, but is not surjective, since we
have:

Im Q1 =
1
( w z
�z⇤ w⇤ ) , (z, w)  C2

2
=
⇧

A M2(C), AJ1 = J1 A⇤
⌃

.

We therefore have an isomorphism of algebras H ⌘ Im Q1. All the definitions
in H can be rephrased in terms of 2⇥ 2 matrices. The dual of A = Q1(q) is by
definition A := Q1(q). It can be rewritten in terms of matrix operations:

(26) A = J1 AT J�1
1 , or equivalently A = A†.

The scalar part q is extracted as q(1) = 1
2 tr Q1(q), while the norm is:

|q| = det Q1(q)

which explains its multiplicativity. We remark that the columns of a ma-
trix in Im Q1 are orthogonal for the hermitian product on C2. Therefore,
Q1(U1(H)) = SU(2).

If we consider complex quaternions, we rather have H⇧ C ⌘ M2(C). All
the relations above continue to hold – because they are C-linear –, except that
the dual of a complex quaternion is not anymore represented by the adjoint
of the corresponding 2⇥ 2 matrix – because complex conjugation is R-linear
but not C linear.

Quaternionic matrices

If we tensor (over R) the previous construction by MN(R), we obtain a mor-
phism of algebras QN : H⇧MN(R) ⇣ MN(C)⇧MN(R), and with natural

17Beware, our terminology differs from Mehta’s book, where elements of H are called ”real
quaternions”, and elements of H⇧C are called ”quaternions”.
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4. Invariant ensembles: from matrices to eigenvalues

identifications of the source and the target:

QN : MN(H) �⇣M2N(C).

MN(H) is the algebra of N ⇥ N quaternionic matrices. If Q is a quaternionic
matrix, we can also build the four N ⇥ N matrices of real coefficients in the
decomposition (4.6), denoted Q(1), Q(I), Q(J) and Q(K). H itself is embedded
in MN(H) by tensoring generators with the identity matrix of MN(R), i.e.
putting the same quaternion on all diagonal entries of an N ⇥ N matrix. For
instance:

QN(J⇧ 1) = JN =

�

#!

0 1
�1 0

. . .
0 1
�1 0

⌫

$" .

Since all linear and multiplicative operations are compatible with extension
by the algebra MN(R), we immediately find:

MN(H) ⌘ Im QN =
⇧

A M2N(C), AJN = JN A⇤
⌃

.

If Q MN(H), we define its dual Q by:

⌫i, j  J1, NK, (Q)i,j = Qi,j.

We see that this is the analog of the adjoint in the world of quaternions – the
involution ”complex conjugation” is replaced by ”quaternion dual”. The effect
on the corresponding 2N⇥ 2N matrices is immediately deduced from (26) by
extension. If we define the dual of A = QN(Q) to be QN(Q), we then have:

(27) A = JN AT J�1
N .

4.13 definition. The set of quaternionic self-dual matrices is:

HN(H) = HN,4 :=
⇧

Q MN(H), Q = Q
⌃

.

This condition is equivalent to require that Q(1) is real symmetric, and the
three matrices Q(I), Q(J), Q(K) are real antisymmetric. The set of quaternionic
unitary matrices is:

UN(H) = GN,4 :=
⇧

U MN(H), UU = 1
⌃

.

Quaternionic self-dual matrices form a vector space, while quaternionic
unitary matrices form a group. Using (27), they can be easily be characterized
in terms of 2N ⇥ 2N matrices:

• Q is quaternionic self-dual iff JNQN(Q) is complex antisymmetric.

• U is quaternionic unitary iff QN(Q) is a (complex) unitary and symplec-
tic matrix.

The main interest about quaternionic self-dual matrices comes from their di-
agonalization property:
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4.6. Appendix: quaternions and quaternionic matrices

4.14 lemma. If Q  HN(H), there exist U  UN(H) and scalar quaternions
q1, . . . , qN such that Q = Udiag(q1, . . . , qN)U�1. In particular, the eigenvalues of
QN(Q) are the q(1)i with multiplicity 2 for i  J1, NK.

Proof. The proof is very similar to the diagonalization of self-adjoint matrices.
If Q is a self-dual matrix, we will actually diagonalize A = QN(Q). Denote s
the canonical symplectic bilinear form, and b the canonical hermitian bilinear
form on C2N :

s(X, Y) = XT JNY, b(X, Y) = X†Y.

They are related by s(X, Y) = �b(JN X⇤, Y). Self-duality means AT JN = JN A,
and this implies that A preserves s:

s(AX, Y) = XT AT JNY = XT JN AY = s(X, AY).

But since A  Im QN , we know A⇤ JN = JN A and deduce that A also preserves
b:

b(X, AY) = �s(JN X⇤, AY) = �s(AJN X⇤, Y) = �s(JN A⇤X⇤, Y) = b(AX, Y).

in particular A is hermitian, so has real eigenvalues. We can already diago-
nalize it with a unitary matrix, but it is useful to remind the source of this
result. If X and Y are two eigenvectors with respective eigenvalues � and µ,
we can compute in two different ways s(X, AY) = µs(X, Y) and s(X, AY) =
s(AX, Y) = �s(X, Y). Similarly, b(X, AY) = µb(X, Y) but also b(X, AY) =
b(AX, Y) = �Y. Therefore, if X and Y are in different eigenspaces, we must
have s(X, Y) = b(X, Y) = 0. Let us pick up an eigenvector X1 for an eigen-
value �1 of A. Since s is non-degenerate, there exists a non-zero vector X◆1
such that s(X1, X◆1) �= 0. Denoting X◆◆1 its projection to the eigenspace E�(A),
we have s(X1, X◆◆1 ) = s(X1, X◆1) �= 0, so we obtained another non-zero vec-
tor in E�(A) that is not collinear to X. Upon a change of basis (X1, X◆1) ⇣
(aX1 + bX◆◆1 , cX1 + dX◆◆1 ), we can always enforce that X1 and X◆◆1 are orthonor-
mal, and s(X1, X◆◆1 ) = 1. If we complete (X1, X◆◆1 ) by vectors (Y1, . . . , Y2N�2) to
form a basis of C2N respecting the decomposition in eigenspaces, we see that
A leaves stables vect(Y1, . . . , Y2N�2) ⌘ C2N�2. By induction, we construct in
this way a unitary and symplectic basis (X1, X◆◆1 , . . . , XN , X◆◆N) of eigenvectors
of A, i.e. such that:

⌫i, j  J1, NK,
s(Xi, X◆◆j ) = ⌃i,j s(Xi, Xj) = s(X◆◆i , X◆◆j ) = 0
b(Xi, Xj) = b(X◆◆i , X◆◆j ) = ⌃i,j b(Xi, X◆◆j ) = 0.

The proof also shows that the eigenvalues come by pairs. In other words, we
have a matrix U M2N(C) of eigenvectors satisfying U†U = 1 and UT JNU =
JN , and such that :

A = Udiag(�1,�1, . . . ,�N ,�N)U�1.
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5 Toolbox for exact computations in invariant ensembles

In this Chapter, µ is a positive measure on R such that all integrals considered
are absolutely convergent, and A is a measurable subset of R. Unless specified
otherwise, all expectation values are considered with respect to the probability
measure on An:

1
Zn,⌅[µ]

n

’
i=1

dµ(xi)
⌥⌥D(x1, . . . , xn)

⌥⌥⌅, ⌅ = 1, 2, 4.

and the partition function is given by:

Zn,⌅[µ] =
(

An

n

’
i=1

dµ(xi)
⌥⌥D(x1, . . . , xn)

⌥⌥⌅.

This is the probability measure on the eigenvalues on a random matrix drawn
from the invariant ensembles. In this case, assuming that all the moments
of µ are finite guarantees that all integrals are absolutely convergent. As we
shall see, ⌅ = 2 is always the simplest case and feature some determinantal
structures ; ⌅ = 4 is the next simplest case and features some pfaffian structure
; ⌅ = 1 also has a pfaffian structure, but it is often more cumbersome because
the answer depends on the parity of n.

5.1 Multilinear algebra

Vandermonde determinant

The partition function of the invariant ensembles is a n-dimensional integral
involves the power ⌅  {1, 2, 4} of the factor:

D(x1, . . . , xn) = ’
1⌦i<j⌦n

(xj � xi).

This is the expression for the Vandermonde determinant:

5.1 lemma.
D(x1, . . . , xn) = det

1⌦i,j⌦n
xj�1

i

.

Proof. The right-hand side is an antisymmetric polynomial in the variables
x1, . . . , xn, of degree (n � 1) in xi. And, for any pair {i, j} it has a simple
zeroes when xi = xj since two columns of the determinant are equal. So, we
can factor out:

det
1⌦i,j⌦n

xj�1
i = ’

1⌦i<j⌦n
(xj � xi) · Pn(x1, . . . , xn),

82



5.1. Multilinear algebra

but a degree inspection shows that Pn(x1, . . . , xn) does not depend on the x’s.
Comparing the coefficient of the leading monomial xn�1

1 xn�2
2 · · · x0

n, we find
P � 1.

We say that a family of non-zero polynomials (Qj)j↵0 is monic if the coeffi-
cient of the leading term is 1, and staggered if deg Qj = j. A staggered family
provides, for any n ↵ 0, a basis (Qj)0⌦j⌦n for the vector space of polynomials
of degree less or equal than n. By operations on columns of the Vandermonde
determinant, we can also write:

D(x1, . . . , xn) = det
1⌦i,j⌦n

Qj�1(xi).

Pfaffians

If A is an antisymmetric matrix of size n, let m := ⌧n/2�. The Pfaffian of A is
defined as:

pf(A) =
1

2mm! Â
◆Sn

sgn(◆)
m

’
i=1

A◆(2i�1),◆(2i).

Notice that if n is odd, the index ◆(n) is not involved in the sum. We can
always convert a pfaffian of size 2m + 1 into a pfaffian of even size 2m + 2:

pf(A) = pf

�

#!
A

1
...
1

�1 ... �1 0

⌫

$" .

The basic properties of the pfaffian:

• (pf A)2 = det A.

• pf(PAPT) = det(P)pf(A).

• pf(AT) = (�1)m pf(A)

• Column expansion assuming n even. Let us denote A[i,j] the matrix of
size (n� 2) obtained by removing the i-th and j-th lines and columns.
Then pf(A) = Ân

i=1(�1)i+1 Ai,2m pf A[i,2m].

It is also useful to remark:

5.2 lemma. Assume n is even. For any ⇤ Mn(C), and any complex antisymmetric
n⇥ n matrices A and B:

pf
2n

⌦
A A⇤T

⇤A ⇤A⇤T + B

↵
= pf A · pf B.

Proof. By column operations, we have:

det
2n

⌦
A A⇤T

⇤A ⇤A⇤T + B

↵
= det

2n

⌦
A 0
0 B

↵
= det A · det B.
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5. Toolbox for exact computations in invariant ensembles

Taking the squareroot of this identity:

pf
2n

⌦
A A⇤T

⇤A ⇤A⇤T + B

↵
= �(⇤)pf A · pf B.

for some � taking values in {±1}. The sign must be independent of ⇤ for
the left-hand side is a continuous function of ⇤. In particular, for ⇤ = 0, the
left-hand side is computed as a block pfaffian and gives � = 1.

Quaternionic determinant

There are several, inequivalent, notions of determinants for matrices with en-
tries in a non-commutative ring. The quaternionic determinant we will define
is one of them, and turns out to be a convenient way to deal with pfaffians. If
A is quaternionic matrix and  = (i(1)⇣ · · · i(r)⇣ i(1)) is a cyclic permuta-
tion of r elements in J1, nK, we define:

(28) P (A) =
⇤
Ai(1)i(2) · · · Ai(r)i(1)

⌅(1)  C.

We remind that q(1) = Tr Q1(q)/2 is the scalar part of the quaternion q. Since
the trace is cyclic, P (A) does not depend on the origin i(1) chosen for the
cycle  . If A is a quaternionic self-dual matrix, the product Ai(1)i(2) · · · Ai(r)i(1)

is actually a scalar, so we can omit (1).

5.3 definition. If A Mn(H), its quaternionic determinant is defined by:

detH A = Â
◆Sn

�(◆) ’
 

P (A).

The product is indexed by the disjoint cycles  appearing in the factorization
of ◆.

If we consider A  Mn(C) as a quaternionic matrix, we have detH A =
det A. Obviously, if A  Mn(H), we have detH A = detH A. However, a main
difference with the commutative case is that in general:

detH(A · B) �= detH A · detHB.

There exists a Cramer-type formula to compute the inverse of a self-dual
quaternionic matrix:

5.4 lemma. If A Hn(H), define the matrix:

Bij = Â
◆Sn
◆(j)=i

�(◆)
-
’
 

i/ 

P (A)
.
· Aia(1)Aa(1)a(2) · · · Aa(r)j .

where (i ⇣ a(1)⇣ a(r)⇣ j ⇣ i) is the cycle of ◆ containing i. B is self-dual, and:

A · B = B · A = (detH A) 1n .
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5.1. Multilinear algebra

Proof. Since Amn = Anm, taking the quaternionic dual of the right-hand side
defining Bij amounts to reversing the cycle containing i. So, Bij = Bji, i.e. B is
self-dual. We will prove (A · B)ij = (detH A) · ⌃i,j for any i, j  J1, nK. The proof
of (B · A) = (detH A) · ⌃i,j is similar and is left as exercise. For i = j, we have:

(A · B)ii =
n

Â
k=1

Â
◆Sn
◆(k)=i

-
’
 

i/ 

P (A)
.
· P i(A) .

where  i is the cycle containing i. Since k is arbitrary here, we are actually
summing over all permutations ◆  Sn, and  i plays the same role as the
other cycles: we recognize detH A. If i �= j, we have:

(A · B)ij =
n

Â
k=1

Â
◆Sn
◆(j)=k

-
’
 

j/ 

P (A)
.
· Aik Aka(1) · · · Aa(r)j .

where  0 = (k ⇣ a(1) ⇣ · · · ⇣ a(r) ⇣ j ⇣ k). When in the permutation ◆,
i = a(s) belongs to the cycle containing j, the last product is:

Aik Aka(1) · · · Aa(r)j =
⇤
Aik Aka(1) · · · Aa(s�1)i

⌅
Aia(s+1) · · · Aa(r)j

But this term also appear when we consider the permutation ◆̃, obtained from
◆ by breaking the cycle:

�
k ⇣ a(1) · · · a(s� 1)⇣ i ⇣ a(s + 1)⇣ · · · a(r)⇣ j ⇣ k

⇥

into the two disjoint cycles:
�

j ⇣ a(s + 1)⇣ · · ·⇣ a(r)⇣ j
⇥

and
�
i ⇣ k ⇣ a(1)⇣ · · ·⇣ a(s� 1)⇣ i

⇥
.

Since �(◆) = ��(◆̃), these two contributions must cancel, hence the claim.

This result is particularly useful in the proof of:

5.5 proposition. If A Mn(H):

detH AA = det Qn(A).

If furthermore A is self-dual:

detH A = pf JnQn(A), (detH A)2 = det Qn(A).

Proof. When A is self-dual, JnQn(A) is antisymmetric, so the right-hand side
of the second equality makes sense. We claim it is enough to prove the third
equality. Indeed, if we have it for any A, the identity:

�
pf JnQn(A)

⇥2
= det JnQn(A) = det Jn · det Qn(A) = det Qn(A)
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5. Toolbox for exact computations in invariant ensembles

implies that there exists � : Hn(H)⇣ {±1} such that:

detH A = �(A) · pf JnQn(A).

Since the determinant and the pfaffian are continuous functions of the matrix
entries, �(A) does not depend on A. And for the identity matrix, it is equal
to 1, so we get the second equality. Besides, the first equality follows from the
second equality, since for any quaternionic matrix A, AA is self-dual, and we
can compute:

detH(AA) = pf JnQn(AA) = pf JnQn(A)Qn(A)

= pf JnQn(A)Jn
�
Qn(A)

⇥T J�1
n = pf Qn(A)Jn

�
Qn(A)

⇥T

= det Qn(A) · pf Jn = det Qn(A).

Let us proceed with the proof of the third equality. Taking the 2n ⇥ 2n
matrix representation of the Cramer formula in Lemma 5.4, we find:

Qn(A)Qn(B) = Qn(B)Qn(A) = detH A · 12n.

Therefore, if detH A �= 0, then Qn(A) is invertible, i.e. det Qn(A) �= 0. The
previous statement can be reformulated by saying that detH A – seen as a
polynomial in the (linearly independent) complex entries of A – vanishes on
the zero locus of the polynomial ideal generated by det Qn(A). According to
the Nullstellensatz (see § 0.1), there exist an integer r ↵ 1 and a polynomial
R(A) such that: �

detH A
⇥r

= R(A)det Qn(A).

Degree comparison imposes r ↵ 2. By dividing both sides by a suitable power
of detH A, one can always assume that R has no common factor with detH A.
Since Qn(A) is homogeneous of degree 2n and while detH A is homogeneous
of degree n, we must have r = 2. Degree considerations also show that R(A)
must be a constant, which is evaluated to 1 for the identity matrix.

5.2 Operators with kernels

We will consider µ a positive measure on A with finite mass.

Setting

The data of a function K  L2(A2, µ⇧2) ⇧K⌅ defines an endomorphism of
L2(A, µ)⇧K⌅ also denoted K, by the formula:

(K f )(x) =
(

A

K(x, y) f (y)dµ(y).

The function (x, y) �⇣ K(x, y) is called the kernel of the operator K. The square-
integrability of the kernel implies that K is a continuous operator in L2 norm:

||K f ||L2(A,µ) ⌦ ||K||L2(A2,µ⇧2) · || f ||L2(A,µ).
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5.2. Operators with kernels

Properties of the kernel or of the operator will be attributed indifferently to
both of them. We say that K is self-dual if K(x, y) = K(y, x), and that it is
trace-class if x �⇣ (K(x, x))(1) exists in L1(A, µ). In this case, we set:

Tr K =
(

A

(K(x, x))(1) dµ(x).

If K  L•(A2, µ⇧2), then K is trace-class.

Fredholm determinant

Let K be a trace-class operator. For any ⇥ ↵ 1, K⇥ is also trace-class, and:

Tr K⇥

⇥
=

1
⇥

(

A⇥

⇤
K(x1, x2) · · · K(x⇥, x1)

⌅(1) ⇥

’
i=1

dµ(xi)

=
1
⇥! Â

 =⇥�cycle
P 
⇤
(K(xi, xj))1⌦i,j⌦⇥

⌅ ⇥

’
i=1

dµ(xi).

In the second line, we have exploited the freedom to relabel the integration
variables. If  is a cycle, we denote ⇥( ) its length, and thus �( ) = (�1)⇥( )+1.
Consider the formal series in t:

F(K; t) := exp
⌦
� Â

⇥↵1

t⇥

⇥
Tr K⇥

↵

= Â
k↵0
n↵0

1
k! Â

 1,..., k
ord. disjoint cycles

Âi ⇥( i)=n

k

’
i=1

(�t)⇥( i)

⇥( i)!

(

An

P 
⇤
(K(xi, xj))ij

⌅ n

’
i=1

dµ(xi).

By ordered disjoint cycles, we mean that  1 is a cyclic permutation of J1, ⇥( 1)K,
 2 is a cyclic permutation of J⇥( 1) + 1, ⇥( 1) + ⇥( 2)K, etc. We can again de-
cide to relabel the variables of integrations to un-order the cycles, at the price
of dividing by the number of ways to do so, namely:

n!
⇥( 1)! · · · ⇥( n)!

.

The sum over unordered disjoint cycles of total length n reconstitutes the sum
over all permutations ◆  Sn, and the sign reconstitutes (�1)n�(◆). Therefore:

F(K; t) = Â
n↵0

(�t)n

n!

(

An

�
detH

1⌦i,j⌦n
K(xi, xj)

⇥ n

’
i=1

dµ(xi)

By the Hadamard inequality, the coefficient of tn is bounded in absolute value
by:

nn/2

n!
⇤
µ(A)||K||•

⌅n
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Hence, the series converges absolutely for any t  C, and defines an entire
function of t. This leads to the definition:

5.6 definition. Let K be a L• kernel. The Fredholm determinant of K is by
definition:

DetH(I � K) := F(K; 1) = Â
n↵1

(�1)n

n!

(

An

�
detH

1⌦i,j⌦n
K(xi, xj)

⇥ n

’
i=1

dµ(xi).

If the base field is K⌅ = R or C, the subscript H is unnecessary on both
sides of the formula. This notion of determinant for operators acting on L2

spaces generalizes the notion of determinant of matrices of finite size. Indeed,
assume there exists an integer k such that:

K(x, y) =
k

Â
m=1

am Bm(x)Cm(y),

where a’s are complex numbers, and B’s and C’s satisfy the orthogonality
relations: (

A

dµ(x)Cm(x)Bn(x) = ⌃m,n  H.

Then, the operator K has rank k, and sends Bm to amBm for m  J1, kK. Let V  
L2(A, µ) be the subspace of dimension k generated by the B’s, and introduce
K|V : V ⇣ V the restriction of K, and K̃|V its matrix in the basis of the B’s.
The trace of K – as an endomorphism of L2(A, µ) – coincides with the trace
of K̃|V – as a finite size matrix – and is equal to Âk

m=1 an
m. Using the initial

formula for F(K; 1):

DetH(I � K) = exp
⌦
�

k

Â
m=1

Â
n↵1

an
m

↵
=

k

’
m=1

(1� am) = det(id� K̃|V).

Hadamard inequality allows the proof of:

5.7 lemma. For a complex valued kernel, K �⇣ Det(I�K) is continuous for the sup
norm.

Proof. Let A and B be complex matrices of size n, and vA
i denote the i-th

column of the matrix A. We define the matrices:

B[0] = A, B[i] =
�
vB

1 , . . . , vB
i , vA

i+1, . . . , vA
n
⇥

i  J1, nK,

and:
C[i] =

�
vB

1 , . . . , vB
i , vA

i+1 � vB
i+1, vB

i+2, . . . , vB
n
⇥
, i  J0, n� 1K.

Since the determinant is linear with respect to the columns, we have:

det A� det B =
n�1

Â
i=0

det B[i] � det B[i+1] =
n�1

Â
i=0

det C[i].
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Therefore, by Hadamard inequality:

⌥⌥det A� det B| ⌦ nn/2+1||A� B||• max
�
||A||•, ||B||•

⇥n�1.

Now, if K and L are two complex valued L• kernels, we can deduce from the
definition of the Fredholm determinant:

⌥⌥Det(I�K)�Det(I� L)
⌥⌥ ⌦ ||K� L||•

⇣

Â
n↵0

nn/2+1

n!
�
||K||•, ||L||•

⇥n�1
µ(A)n

⌘
.

This implies that K �⇣ Det(I � K) is Lipschitz on bounded balls in L•(A2, µ).
A fortiori, it is continuous.

We shall admit that the quaternionic Fredholm determinant is also contin-
uous for the sup norm on self-dual kernels. However, it cannot be proved by
this method. Indeed, the proof of Hadamard inequality uses the multiplica-
tivity of the determinant, thus does not extend to quaternionic determinants.

(Quasi) projectors

5.8 definition. A self-dual kernel K is a quasi-projector if there exists a con-
stant quaternion � such that:

K ⌃ K = K + [�, K].

If � = 0, K is a projector.

Our interest in (quasi) projectors come from the integration lemma:

5.9 proposition. Let K be a self-dual, trace-class kernel which is a quasi projector.
Let c = Tr K. We have for any k ↵ 1:

(

An�k

�
detH

1⌦i,j⌦n
K(xi, xj)

⇥ n

’
i=k+1

dµ(xi) =
G(c� k + 1)
G(c� n + 1)

· detH
1⌦i,j⌦k

K(xi, xj).

Proof. We first prove a one-step integration. We have:
(

A

detH
1⌦i,j⌦n

K(xi, xj)dµ(xn)

= Â
◆Sn

�(◆)
-

’
 

n/ 

P 
⇤
K(xi, xj)ij

⌅.
· P n

⇤
K(xi, xj)ij

⌅
dµ(xn),(29)

where  n is the cycle of ◆ containing n. If n is a fixed point, the last factor is:
(

A

K(x, x)dµ(x) = c.
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Deleting the point n from ◆, we obtain a contribution:

c Â
◆̃Sn�1

�(◆̃)’
 

P 
⇤
K(xi, xj)1⌦i,j⌦n�1

⌅
.

If n is not a fixed point,  n is of the form (n ⇣ i(1) ⇣ · · · ⇣ i(r) ⇣ n),
and we rather have the factor:
�� (

A

K(xi(r), xn)K(xn, xi(1))dµ(xn)
 

K(xi(1), xi(2)) · · · K(xi(r�1), xi(r))

�(1)
.

The integral precisely computes the kernel (K ⌃ K)(xi(r), xi(1)). Since K is a
quasi projector, we can replace it with K + �K � K�. Since K is self-dual, the
term associated to ◆ and containing �K actually coincides with the term asso-
ciated to ◆�1, but the latter comes with a minus sign. So, the terms involving
� cancel out, and we are left with a contribution:

Â
◆Sn

�(◆)
-

’
 

n/ 

P 
⇤
K(xi, xj)ij

⌅.
· P ̃n

⇤
K(xi, xj)ij

⌅
.

Here,  ̃n = (i(1) ⇣ · · · i(r) ⇣ i(1)) is the cycle  n in which n has been
jumped. Replacing  n by  ̃, we obtain from ◆ a permutation ◆̃ of J1, n �
1K. Besides, we have �(◆) = ��(◆̃) since we decreased by 1 the length of a
cycle, and there are exactly n � 1 permutations ◆ leading to the same ◆̃ –
corresponding to the number of ways to insert the element n back into ◆̃. We
thus find the contribution:

�(n� 1) Â
◆̃Sn�1

�(◆̃)’
 

P 
⇤
K(xi, xj)1⌦i,j⌦n�1

⌅
.

Putting the two terms together, we arrive to:
(

A

�
detH

1⌦i,j⌦n
K(xi, xj)

⇥
dµ(xn) = (c� n + 1) detH

1⌦i,j⌦n�1
K(xi, xj).

We conclude by recursion on the number of integrations.

5.10 corollary. If K is a self-dual, trace-class, quasi projector with Tr K = n, we
have for any k  J1, nK:

1
(n� k)!

(

An�k

�
detH

1⌦i,j⌦n
K(xi, xj)

⇥ n

’
i=k+1

dµ(xi) = detH
1⌦i,j⌦k

K(xi, xj)
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6 Invariant ensembles: partition function and

(skew)-orthogonal polynomials

6.1 Unitary invariant ensembles

6.1 lemma (Master integration formula). Let (�i)i↵1 and (⌫j)j↵1 be two families
of continuous functions. We have:

(

An

n

’
i=1

dµ(�i) det
1⌦i,j⌦n

�i(�j) · det
1⌦i,j⌦n

⌫i(�j) = n! det
1⌦i,j⌦n

- (

A

dµ(�) �i(�)⌫j(�)
.
.

Proof. We denote Zn,2[µ] the integral in the left-hand side. By definition of the
determinant and Fubini theorem:

Zn,2[µ] = Â
◆,Sn

�(◆)�()
n

’
i=1

(

A

dµ(�i) �◆(i)(�i)⌫(i)(�i).

Since we taking the product where all i’s are playing the same role, the right-
hand side only depends on the permutation ̃ =  ⌃ ◆�1. We also remark
�(̃) = �(◆)�(). Changing the summation variables (◆, ) to (◆, ◆̃), we get n!
times the same term by summing over ◆, and:

Zn,2[µ] = n! Â
̃Sn

�(̃)
n

’
i=1

(

An

dµ(�) �i(�)⌫̃(i)(�),

which is the result announced.

The integrand for invariant ensembles with ⌅ = 2 has this structure, since
it is a product of two Vandermonde determinants:

D(�1, . . . ,�n) = det
1⌦i,j⌦n

�i(�j) · det
1⌦i,j⌦n

⌫i(�j), �i(�) = ⌫i(�) = �i�1.

We could also choose �i = ⌫i any family of monic staggered polynomials
(qi)i↵0.

6.2 proposition. The partition function of unitary invariant ensembles takes a de-
terminantal form:

Zn,2[µ] = n! det
1⌦i,j⌦n

Mi+j, Mk =
(

A

dµ(�) �k

= n! det
1⌦i,j⌦n

- (

A

dµ(x) qi�1(�) qj�1(�)
.
.

A determinant of the form deti,j(Mi+j) is called a Hankel determinant,
and Mk here is the k-th moment of µ.

A cunning choice of qi puts the matrix inside the determinant in diagonal
form.
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6.3 definition. We define a scalar product on the space of polynomials:

� f , g�2 =
(

A

dµ(�) f (�) g(�).

We say that (pi)i↵0 are orthogonal polynomials (for the measure µ) if it is a
monic staggered family of polynomials and:

⌫i, j ↵ 0, �pi, pj�2 = hi⌃i,j.

The fact that �·, ·�2 is positive definite follows from positivity of µ. It also
implies that orthogonal polynomials are unique and hi > 0 for all i since
they are the squared-norms of pi. Gram-Schmidt orthogonalization shows that
orthogonal polynomial exist. More precisely, for any n ↵ 0, we can obtain
the orthogonal polynomials p0, . . . , pn�1 by orthogonalization in Rn�1[X] –
equipped with this scalar product – of the canonical basis 1, . . . , Xn�1.

6.4 proposition.

Zn,2[µ] = n!
n�1

’
i=0

hi.

6.2 Quaternionic unitary invariant ensembles

6.5 lemma (Master integration formula). Let (�i)i↵1 and (⌫j)j↵1 be two families
of continuous functions.

(

An

n

’
i=1

dµ(�i) det
1⌦i⌦2n
1⌦j⌦n

⇤
�i(�j) ⌫i(�j)

⌅
= n! pf

1⌦i,j⌦2n

- (

A

dµ(�)
�
�i(�)⌫j(�)��j(�)⌫i(�)

⇥.
.

Proof. We denote Zn,4[µ] the left-hand side. By definition of the determinant
and Fubini theorem:

Zn,4[µ] = Â
◆S2n

�(◆)
n

’
i=1

(

A

dµ(�i) �◆(2i�1)(�i) �◆(2i)(�i)

since the variable �i appears in (2i� 1)-th and 2i-th position for i  J1, nK. We
almost recognize the structure of the pfaffian, for a non anti-symmetric matrix.
Since the signature of ◆ and the signature of ◆ ⌃ (2i � 1 2i) are opposite, we
can also anti-symmetrize this formula:

Zn,4 =
1
2n Â

◆S2n

�(◆)
n

’
i=1

(

A

dµ(�i)
�
�◆(2i)(�i)⌫◆(2i�1)(�i)��◆(2i�1)(�i)⌫◆(2i)(�i)

⇥
,

which entails the claim.

This can be applied to the ⌅ = 4 invariant ensembles using:
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6.6 lemma (Confluent Vandermonde). For any monic staggered polynomials (qi)i↵0:

�
D(�1, . . . ,�n)

⇥4
= det

1⌦i⌦2n
1⌦j⌦n

⇤
qi�1(�j) q◆i�1(�j)

⌅
.

Proof. To justify this, we consider first:

D(�1, x1, . . . ,�n, xn) = D(�1, . . . ,�n) · D(x1, . . . , xn) · ’
1⌦i<j⌦n

(�j � xi)(xj � �i)
n

’
j=1

(xj � �j)

= det
1⌦i⌦2n
1⌦j⌦n

⇤
qi�1(�j) qi�1(xj)

⌅
.

These two equalities allow two independent computations of the ”confluent
Vandermonde”:

D̃(�1, . . . ,�n) := lim
xj⇣�j
1⌦j⌦n

D(�1, x1, . . . ,�n, xn)

’n
j=1(xj � �j)

.

From the first equality, we immediately get:

D̃(�1, . . . ,�n) =
�
D(�1, . . . ,�n)

⇥4.

Now consider the second inequality, where a determinant appears. The con-
fluence operation amounts to applying ’n

j=1 ⇡xj and evaluate at xj = �j. Since
xj only appears in the 2j-th column, and the determinant is a linear function
of each of its column, the differentiation ⇡xj can be applied to the 2j-th column
for j  J1, nK, thus giving:

D̃(�1, . . . ,�n) = det
1⌦i⌦2n
1⌦j⌦n

⇤
qi�1(�j) q◆i�1(�j)

⌅
.

6.7 proposition. The partition function of the quaternionic unitary invariant en-
sembles takes a pfaffian form:

Zn,4[µ] = n! pf
1⌦i,j⌦2n

- (

A

dµ(�) (j� i) �i+j�3
.

= n! pf
1⌦i,j⌦2n

- (

A

dµ(�)
�
qi�1(�)q◆j�1(�)� q◆i�1(�)qj�1(�)

⇥.
.

Now, the simplest form we can hope to reach by a clever choice of qi’s is
the pfaffian of a matrix formed by 2⇥ 2 blocks on the diagonal.

6.8 definition. We define a skew-symmetric bilinear form on the space of
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polynomials:

� f , g�4 =
(

A

dµ(�)
�

f (�) g◆(�)� f ◆(�)g(�)
⇥
.

We say that (pi)i↵0 are ⌅ = 4 skew-orthogonal polynomials (for the measure
µ) if it is a monic staggered family of polynomials and:

⌫i, j ↵ 0,
�
�p2i, p2j+1�4 = ��p2i+1, p2j�4 = hi⌃i,j
�p2i, p2j�4 = �p2i+1, p2j+1�4 = 0

The existence of ⌅ = 4 skew-orthogonal polynomials when µ is a positive
measure will be justified – constructively – in Proposition 6.16. We can already
remark that they are not unique, since we can add to p2i+1 any multiple of p2i
without changing the skew-orthogonality relations. However, hi is uniquely
defined, and called the pseudo-squared norm of pi. We deduce:

6.9 proposition.

Zn,4[µ] = n!
n�1

’
i=0

hi.

Since Zn,4[µ] was the integral of a positive measure on Rn, we deduce that:

hn = (n + 1)
Zn+1,4[µ]

Zn,4[µ]
> 0.

and in particular, the ⌅ = 4 skew-symmetric bilinear form is non-degenerate
on R[X]. These two last facts are not at all obvious from the definition of the
bilinear form.

6.3 Orthogonal ensembles

6.10 lemma (Master integration formula). Let s  L•(A2) be real-valued, such
that s(�1,�2) = �s(�2,�1), and (�i)i↵1 be a family of continuous functions. Let us
denote:

Zn,1[µ] =
(

An

n

’
i=1

dµ(�i) pf
1⌦i,j⌦n

s(�j,�i) · det
1⌦i,j⌦n

�i(�j).

If n is even, we have a pfaffian of size n:

Zn,1[µ] = n! pf
1⌦i,j⌦n

Si,j, Si,j =
(

A2

dµ(x)dµ(y) s(y, x) �i(x)�j(y) .

If n is odd, we have a pfaffian of size (n + 1):

Zn,1[µ] = n! pf
1⌦i,j⌦n

�
Si,j vi
�vj 0

�
, vi =

(
dµ(x) �i(x).

Proof. Let m = ⌧n/2�. We replace the pfaffian and the determinant by their
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definition:

Zn,1[µ] =
1

2m m! Â
◆,Sn

�(◆)�()
(

An

m

’
i=1

s(�◆(2i),�◆(2i�1))
n

’
i=1

�(i)(xi)dµ(xi).

Since the integration variables all play the same role, we can relabel them
◆(i) ⇣ i. Then, the variables (�2i�1,�2i) are coupled via s for each i  J1, mK,
and we can use Fubini theorem to write the result as a sum of products of
m double integrals. If n is odd, this must be amended since the variable �n –
formerly labeled �◆(n) – stays alone and gives an extra 1-dimensional integral.
All in all, denoting ̃ = ◆ ⌃ �1:

Zn,1[µ] =
1

2m m! Â
◆,̃Sn

�(̃)
m

’
i=1

s(�2i,�2i�1) �̃(2i)(�2i)�̃(2i�1)(�2i�1)dµ(�2i�1)dµ(�2i)

⇥
(

A

�̃(n)(�n)dµ(�n) if n odd .

The terms do not depend on ◆ so we get a factor of n!. For n even, the sum
over ̃ is precisely the pfaffian of the matrix S. For n odd, let us extend ̃ to
a permutation of (n + 1) indices by setting ̃(n + 1) = n + 1, and define the
(n + 1)⇥ (n + 1) matrix:

S̃ =

⌦
Si,j vi
�vj 0

↵
, vi =

(

A

dµ(x) �i(x).

We recognize:

Zn,1[µ] =
n!

2m m! Â
̃Sn+1

̃(n+1)=n+1

�(̃)
m+1

’
i=1

S̃̃(2i�1),̃(2i).

The terms in this sum only depends on the set of pairs {{̃(2i� 1), ̃(2i)}, 1 ⌦
i ⌦ n+ 1}, and there are precisely 2m+1(m+ 1)! permutations giving the same
set of pairs (corresponding to changing the order in which the pair appears,
and labeling the two elements in a given pair). In particular, there is one pair
that contains (n + 1), and allowing for relabeling of this element, i.e. waiving
the condition ̃(n + 1) = n + 1, gives (n + 1) = 2(m + 1) copies of the same
term. Thus:

Zn,1[µ] =
n!

2m+1 (m + 1)! Â
̃Sn

�(◆)
m+1

’
i=1

S̃̃(2i�1),̃(2i) = n! pf
1⌦i,j⌦n+1

S̃i,j.

The annoying feature of the ⌅ = 1 ensembles is the absolute value around
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the Vandermonde:
⌥⌥D(�1, . . . ,�n)

⌥⌥ = ’
1⌦i<j⌦n

sgn(�j � �i) · D(x1, . . . , xn)

= ’
1⌦i<j⌦n

sgn(�j � �i) · det
1⌦i,j⌦n

qi�1(�j).(30)

Remarkably, the product of signs can be written as a pfaffian, so we recognize
the structure of Lemma 6.10.

6.11 lemma (de Bruijn, 1955). Let X be a completely ordered set, and x1, . . . , xn be
pairwise disjoint elements of X. We define sgn(x, y) = 1 if x > y, and �1 if y < x.
We have:

’
1⌦i<j⌦n

sgn(xj, xi) = pf
1⌦i,j⌦n

sgn(xj, xi).

Proof. The two sides are antisymmetric functions of the xi’s, so it is enough
to prove the lemma for x1 < . . . < xn. In this case, the left-hand side is 1.
The identity for n even implies the identity for n odd. Indeed, if n is odd,
we can add to X a variable • which is larger than all elements of X, and set
xn+1 = •, and both sides of the identity remain the same under this operation
(since all the new signs are +1). Now, let us assume n = 2m even. We denote
S the n⇥ n matrix with entries Si,j, of which we want to compute the pfaffian.
We introduce the n⇥ n matrix P:

⌫i, j  J1, nK, Pi,j =

�
 

�

1 if i > j
�1 if i = 2k� 1, j = 2k, k  J1, mK
0 otherwise

.

If we can show S = PJmPT , the properties of the pfaffian imply

pf S = det P · pf Jm = det P = 1.

Since S and PJmPT are antisymmetric matrices, it is enough to check the iden-
tity for the lower off-diagonal terms. For i > j, we compute:

(PJmPT)i,j =
m

Â
k=1

Pi,2k�1Pj,2k � Pi,2kPj,2k�1 =
⌧i/2�

Â
k=1

Pj,2k �
⌧(i�1)/2�

Â
k=1

Pj,2k�1.

The �1 entry in Pi,• can contribute only when i is odd, and to the k-th terms
such that i = 2k� 1. However, since we assumed j < i, we have Pj,i=2k�1 = 0 in
this case, so we never find an extra term in (6.3). The remaining sums contain
only 1’s, except for the contribution of the �1 in the first sum when j is odd:

(PJmPT)i,j =
/ j� 1

2

0
�
/ j

2

0
+

�
�1 if j odd
0 if j even

This is in any case equal to �1, which coincides with sgn(xj � xi).
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6.12 proposition. The partition function of the orthogonal invariant ensembles
takes a pfaffian form, whose size depends on the parity of n.

n even Zn,1[µ] = n! pf
1⌦i,j⌦n

Si,j ,

n odd Zn,1[µ] = n! pf
1⌦i,j⌦n+1

S̃i,j ,

where:

S =
� (

A2

dµ(�1)dµ(�2) sgn(�2 � �1)qi�1(�1)qj�1(�2)
 

1⌦i,j⌦n
,

and:

S̃ =

�

#!
S

v1
...

vn

�v1 ... �vn 0

⌫

$" , vi =
(

A

dµ(�) qi�1(�).

As for ⌅ = 4, the result is simplified by the choice of suitable skew-
orthogonal polynomials.

6.13 definition. We define the skew-symmetric bilinear form on R[X]:

� f , g�1 =
(

A2

dµ(�1)dµ(�2)sgn(�2 � �1) f (�1) f (�2).

We say that (pi)i↵0 are ⌅ = 1 skew-orthogonal polynomials (for the measure
µ) if it is a monic staggered family of polynomials and:

⌫i, j ↵ 0,
�
�p2i,2j+1�1 = ��p2i+1,2j�1 = hi⌃i,j
�p2i, p2j�1 = �p2i+1, p2j+1�1 = 0

The existence of ⌅ = 1 skew orthogonal polynomials will be justified –
constructively – in Proposition § 6.18. As for ⌅ = 4, they are not unique since
we can shift p2i+1 ⇣ p2i+1 + ci p2i for any constant ci.

6.14 proposition.

n even Zn,1[µ] = n!
n/2�1

’
i=0

hi ,

n odd Zn,1[µ] = n!
⌦ (n�3)/2

’
i=0

hi

↵
·
(

A

dµ(�) pn(�) .(31)

The formula for n odd contains an extra factor, and is established by direct
computation of the pfaffian of size n + 1 for the matrix of pairings of pi’s
augmented by the last column v/last line �v. This also shows that hi > 0 and&

A dµ(�) p2i+1(�) > 0 for any i ↵ 0, independently of the choice of the skew-
orthogonal polynomials. This fact is not at all obvious from the definitions.
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6.4 Orthogonal and skew-orthogonal polynomials
Lecture 11 (1h30)
November 11th, 2014 The purpose of this section is to show that the relation between (skew)-

orthogonal polynomials and invariant ensembles is deeper: (skew) orthogo-
nal polynomial themselves are (closely related to) the expectation value of
the characteristic polynomial of the random matrix M drawn from invariant
ensembles.

A remark

Let f  L2(A, µ) be a complex-valued such Zn,⌅[µ · f ] converges absolutely.
We can write:

En,⌅

- n

’
i=1

f (�i)
.
=

Zn,⌅[ f · µ]

Zn,⌅[µ]
,

where the expectation value is computed with respect to the probability mea-
sure on An:

(32) Z�1
n,⌅[µ] ·

n

’
i=1

dµ(�i)
⌥⌥D(�1, . . . ,�n)

⌥⌥⌅.

The previous results show how to compute the partition functions in terms
of any family of monic staggered polynomials. Imagine that we choose this
family to be orthogonal (or skew-orthogonal if ⌅ = 1, 4) polynomials (pi)i↵0
for the measure µ.

For ⌅ = 2, we find:

En,⌅
⇤

det f (M)
⌅

= En,⌅

- n

’
i=1

f (�i)
.

=
� n�1

’
i=0

h�1
i

 
det

1⌦i,j⌦n

- (

A

f (�) pi�1(�)pj�1(�)
.

= det
1⌦i,j⌦n

- (

A

f (�) p̂i�1(�) p̂j�1(�)
.

,(33)

where we have introduced the orthonormal polynomials p̂i(�) = pi(�)/hi.
This formula has a nice interpretation in terms of truncated operators.

L2(A, µ) is a Hilbert space when equipped with the scalar product �·, ·�2. Since
we assumed that all moments of µ are finite, Rn�1[X] is a subspace, which has
( p̂i)0⌦i⌦n�1 as an orthonormal basis. Let us define:

• ↵n : Rn�1[X]⇣ L2(A, µ) the canonical inclusion.

• ⇣n : L2(A, µ)⇣ Rn�1[X] the orthogonal projection.

• f : L2(A, µ) ⇣ L2(A, µ) the endomorphism consisting in pointwise
multiplication by the function f .

We see that:
En,⌅

⇤
det f (M)

⌅
= Det

Rn�1[X]
⇣n f ↵n ,
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where Det is defined as the determinant of the matrix of the operator in any
orthonormal basis – and this does not depend on the choice of orthonormal
basis. In other words, the expectation value in the left-hand side is the deter-
minant of the truncation of the operator f to a finite-dimensional subspace –
that is increasing (for the inclusion) with n. Yet another reformulation: we can
exchange the order of the determinant and the expectation value, provided we
replace the scalar function f by an operator f. This fact makes random matrix
models analogous to quantum mechanical systems. In particular, if we choose
f (�) = (z� �), we have:

En,⌅
⇤

det(z�M)
⌅

= DetRn�1[X](z� fn), fn = ⇣n f ↵n .(34)

A similar reformulation can be settled for ⌅ = 1 and 4. It is however
important to notice that we want to use the skew-orthogonal polynomials
(pi)i↵0 for the measure µ, and not for µ · f .

⌅ = 2: orthogonal polynomials

6.15 theorem (Heine). The orthogonal polynomials are given by:

pn(z) = En,2
⇤

det(z�M)
⌅

.

As a consequence of (34), the orthogonal polynomial of degree n is the
characteristic polynomial of the truncation fn of f  L(L2(A, µ)) to a subspace
of dimension n. In particular, the zeroes of the orthogonal polynomials are the
eigenvalues18 of fn.

Proof. We observe that:

n

’
i=1

(z� �i)D(�1, . . . ,�n) = D(�1, . . . ,�n, z) .

Therefore, with the convention �n+1 = z fixed, we can write:

Zn,2[µ] · En,2
⇤

det(z�M)
⌅
=
(

An

n

’
i=1

dµ(�i) det
1⌦i,j⌦n

pi�1(�j) · det
1⌦i,j⌦n+1

pi�1(�j) .

Then, we replace the first determinant by its definition:

n!
n�1

’
i=0

hi ·En,2
⇤

det(z�M)
⌅
= Â

◆Sn

�(◆)
(

An

n

’
i=1

p◆(i)�1(�i)dµ(�i) · det
1⌦i,j⌦n+1

pi�1(�j) .

We can relabel the integration variables i ⇣ ◆(i), and by antisymmetry of the
second determinant, this absorbs the signature �(◆). We are left with n! equal

18From this fact, one can e.g. give a proof that the zeroes of pi interlace those of pi+1.
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terms, and the factorial cancels on both sides:

� n�1

’
i=0

hi

 
En,2

⇤
det(z�M)

⌅
=
(

An

n

’
j=1

pj�1(�j)dµ(�j) · det
1⌦i,j⌦n+1

pj�1(�i) .

By linearity of the determinant with respect to its columns, we can include the
first factor and the integration over �j in the j-th column of second determi-
nant for j  J1, nK:

� n�1

’
i=0

hi

 
En,2

⇤
det(z�M)

⌅
= det

1⌦i⌦n+1
1⌦j⌦n

✓
&

A dµ(�j) pi�1(�j)pj�1(�j)
p0(z)

...
pn(z)

◆
.

Since the pi’s are orthogonal, the matrix is upper-triangular, with h0, . . . , hn�1, pn(z)
on the diagonal. Hence:

� n�1

’
i=0

hi

 
En,2

⇤
det(z�M)

⌅
=

n�1

’
i=0

hi · pn(z) ,

which is the desired relation.

⌅ = 4 skew-orthogonal polynomials

6.16 proposition (Eynard, 2001). Let (cn)n↵0 be an arbitrary sequence of real
numbers. The following formula define ⌅ = 4 skew-orthogonal polynomials:

p2n(z) = En,4
⇤

det(z�M)
⌅
, p2n+1(z) = En,4

⇤
(z + TrM + cn)det(z�M)

⌅
.

Notice that the polynomials of degree 2n and 2n + 1 are both given by an
expectation value over quaternionic self-dual matrices of size n. We remind
that in the representation as 2n⇥ 2n complex matrices, M has n eigenvalues
with even multiplicities.

Proof. The right-hand sides define monic staggered polynomials p̃i(z) for i ↵
0. The claim is equivalent to checking the skew-orthogonality relations:

(35) ⌫n ↵ 0,
�
⌫q  R2n[X], � p̃2n, Q�4 = 0
⌫q  R2n�1[X], � p̃2n+1, Q�4 = 0 .

Let us focus on the first relation. We want to compute the pairing:

� p̃2n, q�4 µ
(

An+1

n+1

’
i=1

dµ(�i)T(�1, . . . ,�n+1) ,

where:

T(�1, . . . ,�n;�n+1) = R(�1, . . . ,�n+1)Q◆(�n+1)� ⇡�n+1 R(�1, . . . ,�n+1) Q(�n+1)

R(�1, . . . ,�n+1) = D(�1, . . . ,�n)
4 ·

n

’
i=1

(�n+1 � �i)
2 .

100



6.4. Orthogonal and skew-orthogonal polynomials

The notation µ means ”proportional to”: since we want to show that the ex-
pression vanishes, we do not care about overall multiplicative prefactors. Fol-
lowing the proof of the confluent Vandermonde (Lemma 6.6), we see that:

R(�1, . . . ,�n+1) = lim
xj⇣�j
1⌦j⌦n

D(�1, x1, . . . ,�n, xn,�n+1)

’n
j=1(xj � �j)

= det

⇠

⌧⇢
q0(�1) q◆0(�1) · · · q0(�n) q◆0(�n) q0(�n+1)

...
...

...
...

...
q2n(�1) q◆2n(�1) · · · q2n(�n) q◆2n(�n) q2n(�n+1)

⇡

�� ,

where (qi)i↵0 is an arbitrary monic staggered family of polynomials. And,
since the variable �n+1 only appears in the last column, it is easy to differen-
tiate:

⇡�n+1 R(�1, . . . ,�n+1) = det

⇠

⌧⇢
q0(�1) q◆0(�1) · · · q0(�n) q◆0(�n) q◆0(�n+1)

...
...

...
...

...
q2n(�1) q◆2n(�1) · · · q2n(�n) q◆2n(�n) q◆2n(�n+1)

⇡

�� .

T is a linear combination of these two determinants of size (n + 1), there-
fore it can be represented as the expansion with respect to the last line of a
determinant of size (n + 2):

T(�1, . . . ,�n;�n+1)

= det

⇠

⌧⌧⌧⇢

q0(�1) q◆0(�1) · · · q0(�n) q◆0(�n) q0(�n+1) q◆0(�n+1)
...

...
...

...
...

...
q2n(�1) q◆2n(�1) · · · q2n(�n) q◆2n(�n) q2n(�n+1) q◆2n(�n+1)

0 0 · · · 0 0 Q(�n+1) Q◆(�n+1)

⇡

����
.

The variable �n+1 plays a special role in T, but since we integrate over all
�i’s, relabeling gives the same result. Thus:

(36) � p̃2n, Q�4 µ
(

An+1

n+1

’
i=1

dµ(�i) T(�1, . . . ,�i�1,�i+1, . . . ,�n+1;�i),

and by permutation of rows and columns, we notice that

T(�1, . . . ,�i�1,�i+1, . . . ,�n+1;�i)

can be written as a determinant of a matrix identical to that appearing in
T(�1, . . . ,�n;�n+1), except for the last line which consists in Q(�i) Q(�i)

◆ in
the (2i� 1)-th and 2i-th columns and zero for the other entries. And, by linear-
ity of the determinant with respect to its lines, the sum over i can be included
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in the last line:

� p̃2n, Q�4 µ
(

An+1

n+1

’
i=1

dµ(�i) det

⇠

⌧⌧⌧⇢

q0(�1) q◆0(�1) · · · q0(�n+1) q◆0(�n+1)
...

...
...

...
q2n(�1) q◆2n(�1) · · · q2n(�n+1) q◆2n(�n+1)
Q(�1) Q◆(�1) · · · Q(�n+1) Q◆(�n+1)

⇡

����
.

(37)

Finally, if deg Q ⌦ 2n, then it must be a linear combination of the staggered
family qi for i  J0, 2nK, so the lines of this matrix are linearly dependent: the
determinant is 0.

Now consider the second relation in (35). Notice that TrM = Ân
i=1 �i. So,

we have to compute:

� p̃2n, q�4 µ
(

An+1

n+1

’
i=1

dµ(�i)T̃(�1, . . . ,�n+1) ,

with:

T̃(�1, . . . ,�n+1) = R̃(�1, . . . ,�n+1)Q◆(�n+1)� ⇡�n+1 R̃(�1, . . . ,�n+2)Q(�n+1)

R̃(�1, . . . ,�n+1) =
�
�n+1 +

n

Â
i=1

�i + cn

 
R(�1, . . . ,�n) .

This can be written:

T̃(�1, . . . ,�n+1) =
� n+1

Â
i=1

2�i + cn)T(�1, . . . ,�n+1)

�
�

R(�1, . . . ,�n+1)Q̃◆(�n+1)� ⇡�n+1 R(�1, . . . ,�n+1)Q̃(�n+1)
 

.(38)

where Q̃(�n+1) = �n+1Q(�n+1). We can then repeat, for each line, the ma-
nipulations (symmetrization) we did in the even case. In the first line, this
leads to the integral (37) with an extra factor (Ân+1

i=1 2�i + cn) in the integrand,
and we have seen the determinant is 0. In the second line, this leads to (37)
with Q̃ instead of Q. Since deg Q̃ = deg Q + 1 ⌦ 2n, the determinant is again
zero.

⌅ = 1 skew-orthogonal polynomials

Let us start with an elementary lemma about sign functions:

6.17 lemma. Let x1, . . . , xn, y be pairwise disjoint elements of a completely ordered
set X, and n odd. We have:

n

Â
k=1

sgn(y� xk)
n

’
i=1
i �=k

sgn(xk � xi) =
n

’
i=1

sgn(y� xi).
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Proof. Both sides are antisymmetric functions of the xi’s, so we can assume
x1 > . . . > xn. We add to X two elements: �• which smaller than all ele-
ments in X ; +• which is larger than all elements in X. And we complete
our sequence by x0 = +• and xn+1 = �•. Then, there is a unique ⇥  J0, nK
such that x⇥ > y > x⇥+1, and the right-hand side is equal to (�1)⇥, while the
left-hand side is:

�
⇥

Â
k=1

(�1)k�1 +
n

Â
k=⇥+1

(�1)k�1 =
� n+1

Â
k=1

(�1)k
 
� (�1)⇥+1.

This last equality comes from the observation that the jump of sign at k = ⇥+ 1
can be interpreted as a gap at position ⇥ + 1 in a sum of n + 1 alternating
signs. Since n is odd, the first sum is zero and the total is equal also equal to
(�1)⇥.

6.18 proposition (Eynard, 2001). Let (cn)n↵0 be an arbitrary sequence of real
numbers. The following formula define ⌅ = 1 skew-orthogonal polynomials:

p2n(z) = E2n,1
⇤

det(x�M)
⌅
, p2n+1(z) = E2n,1

⇤
(z + Tr M + cn)det(z�M)

⌅
.

Proof. As for ⌅ = 4, we need to check that the polynomials p̃i(z) in the right-
hand sides satisfy the skew-orthogonality relations (35) for the pairing �·, ·�1.
We first consider:

� p̃2n, Q�1 µ
(

A2n+2

2n+2

’
i=1

dµ(�i)S(�1, . . . ,�2n) · sgn(�2n+2 � �2n+1)

⇥ D(�1, . . . ,�2n+1) Q(�2n+2),

where for convenience we introduced:

S(�1, . . . ,�n) = ’
1⌦i<j⌦n

sgn(�j � �i).

We can extend the product of signs over pairs to 1 ⌦ i < j ⌦ 2n + 1, provided
we also multiply by an extra ’2n+1

i=1 sgn(�2n+1 � �i). The variables �2n+1 and
�2n+2 plays a special role in the integrand, but we are anyway integrating over
all �i’s. So, we can symmetrize the formula in �2n+1, and find:

� p̃2n, Q�1 µ
(

A2n+2

2n+2

’
i=1

dµ(�i)D(�1, . . . ,�2n+1) · S(�1, . . . ,�2n+1)

⇥


2n+1

Â
k=1

sgn(�2n+2 � �k)
2n+1

’
i=1
i �=k

sgn(�k � �i)

�
Q(�2n+2).

Now, we use the identity of Lemma 6.17 with 2n + 1 odd and y = �2n+2. The
sum is replaced by a product of signs that can be incorporated in S in which
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the variable �2n+2 is added:

� p̃2n, Q�1 µ
(

A2n+2

2n+2

’
i=1

dµ(�i) S(�1, . . . ,�2n+2) · D(�1, . . . ,�2n+1) · Q(�2n+2),

and we can write part of the integrand as a determinant of size (2n + 2) of a
block-upper triangular matrix:

D(�1, . . . ,�2n+1) ·Q(�2n+2) = det

⇠

⌧⌧⌧⇢

q0(�1) · · · q0(�2n+1) q0(�2n+2)
...

...
...

q2n(�1) · · · q2n(�2n+1) q2n(�2n+2)
0 · · · 0 Q(�2n+2)

⇡

����
,

where (qi)i↵0 is any monic staggered family of polynomials. At this stage, we
can relabel �2n+2, then symmetrize as we did for ⌅ = 4 and use the linearity
of the determinant with respect to its last line. Because the product of signs in
S is completely antisymmetric, this yields:

� p̃2n, Q�1 µ
(

A2n+2

2n+2

’
i=1

dµ(�i) S(�1, . . . ,�2n+2) ·det

⇠

⌧⌧⌧⇢

q0(�1) · · · q0(�2n+2)
...

...
q2n(�1) · · · q2n(�2n+2)
Q(�1) · · · Q(�2n+2)

⇡

����
.

If Q has degree ⌦ 2n, it must be linear combination of qi for i  J0, 2nK, and
the determinant vanishes.

We now consider � p̃2n+1, Q�1 for a polynomial Q of degree ⌦ 2n� 1:

� p̃2n+1, Q�1 µ
(

A2n+2

2n+2

’
i=1

dµ(�i) S(�1, . . . ,�2n+2) · D(�1, . . . ,�2n+2) · Q(�2n+2)

⇥
� 2n+1

Â
i=1

�i + cn

 

Following the same steps, we arrive to an integral of:

� 2n+2

Â
i=1

�i + cn

 
S(�1, . . . ,�2n+2)D(�1, . . . ,�2n+2) Q(�2n+2)

�S(�1, . . . ,�2n+2)D(�1, . . . ,�2n+2) Q̃(�2n+2)

with Q̃(�2n+2) = �2n+2Q(�2n+2. Then, we can symmetrize each term with
respect to �2n+2 as before (in the first line, the prefactor in bracket is already
completely symmetric, thus it remains a factor after the symmetrization). We
can apply the same remark concerning the vanishing of the determinant for
Q or Q̃ – which both have degree ⌦ 2n – to conclude.
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7 Invariant ensembles: eigenvalue statistics and kernels

Lecture 12 (1h30)
November 17th, 2014We harvest the fruits of Chapter 5, relying on the notions on quaternionic

determinants (Definition 5.3) and quasi-projectors (Definition 5.8).

7.1 Definition of some eigenvalue statistics

Imagine we have a probability measure Pn on Rn, and consider the pushfor-
ward of Pn by the projection Rn ⇣ Rn/Sn. {�1, . . . ,�n}  Rn/Sn could be
e.g. eigenvalues of a random matrix, and our main example is Pn having a
density given by (32), but the notions we will introduce hold in full generality.
We would like to ask what is the probability of finding k eigenvalues around
given positions in R, to be expressed in terms of Pn and the corresponding
expectation value En. Because the eigenvalues are not labeled, we will have to
carry combinatorial factors all the way through. Let µ be an (arbitrary) positive
measure on R with finite total mass. We introduce:

7.1 definition. If it exists, the k-point density correlation with respect to µ is
a function ✓k|n  L1(Rk, µ⇧k) such that ✓k|n ↵ 0 is almost everywhere positive,
✓k|n is symmetric in its k variables, and for any bounded, continuous µ-almost
everywhere, test function f on Rk, symmetric in its k variables:

En

-
Â

1⌦i1,...,ik⌦n
pairwise distinct

f (�i1 , . . . ,�ik )
.
=
(

Rk

✓k|n(x1, . . . , xk) f (x1, . . . , xk)
k

’
i=1

dµ(xi).

Clearly, ✓k|n is uniquely characterized by Definition 7.1. Lemma 7.2 below
give a formula to compute it. By taking f � 1, we observe the normalization:

(39)
(

Rk

✓k|n(x1, . . . , xk)
k

’
i=1

dµ(xi) =
n!

(n� k)!
= #

�
choosing k labeled
elements among n

✏

and in particular:

(40)
(

R

✓1|n(x)dµ(x) = n,
(

Rn

✓n|n(x1, . . . , xn)
n

’
i=1

dµ(xi) = n! .

For this reason, ✓k|n is not the density of a probability measure on Rk, in
particular it is not the marginal of a probability measure on Rn. However, it is
a marginal up to a combinatorial factor:

7.2 lemma. Assume that there exists an n-point density correlation ✓n|n. Then:

(41) n! · Pn = ✓n|n · µ⇧n
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for any k  J1, nK, the k-point correlation density exists and is given by the formula:

✓k|n(x1, . . . , xk) =
1

(n� k)!

(

Rn�k

✓n|n(x1, . . . , xn)
n

’
i=k+1

dµ(xi) .

The normalization in this formula is compatible with (39)-(40).

Proof. The relation between Pn and ✓n|n follows from the definition. Let f be
a function in k variables which is bounded and continuous µ-almost every-
where. We set:

F(x1, . . . , xn) = Â
1⌦i1,...,ik⌦n

pairwise distinct

f (xi1 , . . . , xik ).

Using the definition of ✓n|n and its symmetry, we can compute:

En

-
Â

◆Sn

F(�◆(1), . . . ,�◆(n))
.

=
(

Rn

F(x1, . . . , xn) ✓n|n(x1, . . . , xn)
n

’
i=1

dµ(xi)

=
n!

(n� k)!

(

Rk

f (x1, . . . , xk)

⇣ (

Rn�k

✓n|n(x1, . . . , xn)
n

’
i=k+1

dµ(xi)

⌘
k

’
j=1

dµ(xj).

On the other hand, if ✓k|n exists, we would have:

En

-
Â

◆Sn

F(�◆(1), . . . ,�◆(n))
.
= n!

k(

R

f (x1, . . . , xk) ✓k|n(x1, . . . , xk)
k

’
i=1

dµ(xk)

The comparison of these two formulas gives the result.

If A1, . . . , Ak are disjoint measurable subsets, the probability that at least
one eigenvalue is found in each Ai is evaluated by taking f (x1, . . . , xk) =
’k

i=1 1Ai (xi) in Definition 7.1:

Pn

- k*

i=1

⇧
Sp Mn ⇢ Ai �= ∆

⌃.
=
(

A1

dµ(x1) · · ·
(

Ak

dµ(xk) ✓k|n(x1, . . . , xk).
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Other characterization and gap probabilities

If g is a continuous bounded function and t  R, the identity:

n

’
i=1

(1 + tg(�i)) =
n

Â
k=0

tk Â
1⌦i1<...<ik⌦n

k

’
a=1

g(�ia)

=
n

Â
k=0

tk

k! Â
1⌦i1,...,ik⌦n

pairwise distinct

k

’
a=1

g(�ia)

translates into:

En

- n

’
i=1

(1 + tg(�i))
.
=

n

Â
k=0

tk

k!

(

Rk

k

’
i=1

✓k|n(x1, . . . , xk)
k

’
i=1

g(xi)dµ(xi)

7.3 lemma. Formula 42 characterizes (✓k|n)1⌦k⌦n.

Proof. Assume that for k  J1, nK we have identified symmetric, non-negative
functions of k-variables ✓k|n ↵ 0 such that (42) holds. Then, for any g1, . . . , gk

continuous bounded functions, we can set t = 1 and choose g = Âk
i=1 tigi.

Picking up the coefficient of t1 · · · tk in both sides of the equation, we find:

E
-

Â
1⌦i1,...,ik⌦n

pairwise distinct

k

’
a=1

g(�ia)
.
=
(

Rk

✓k|n(x1, . . . , xk)
k

’
i=1

dµ(xi) .

Then, the span of functions of the ’k
i=1 gi(xi) is dense for the sup norm on any

compact in the space continuous bounded functions of k variables. Therefore,
✓k|n can be identified with k-point density correlation.

If A is a measurable subset of R, choosing g = 1A and t = �1 gives:

Gn(A) := En

- n

’
i=1

1Ac(�i)
.
=

n

Â
k=0

(�1)k

k!

(

Ak

k

’
i=1

✓k|n(x1, . . . , xk)
k

’
i=1

dµ(xi) .

7.4 definition. Gn(A) is the probability that no eigenvalue is found in A, it
is called the gap probability.

For instance:
Pn
⇤
�max ⌦ s

⌅
= Gn

�
[s,+•]

⇥
.

7.2 Kernel for beta = 2

We put ourselves in the framework of the master integration formula for ⌅ = 2
(Lemma 6.1) and the use of orthogonal functions. Let (�i)i↵0 be a sequence of
real-valued functions in L2(A, µ), which are orthonormal for the scalar prod-
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uct:
⌫i, j ↵ 1, ��i, �j�2 =

(

A

�i(x)�j(x)dµ(x) = ⌃i,j .

We consider a model with the n-point density correlation is:

(42) ✓
(2)
n|n(x1, . . . , xn) = det

1⌦i,j⌦n
�i(xj) · det

1⌦i,j⌦n
⌫i(xj) .

Using det A · det B = det AT B, we can put the n-point density correlation in
the form:

✓
(2)
n|n(x1, . . . , xn) = det

1⌦i,j⌦n
K(2)

n (xi, xj), K(2)
n (x, y) =

n�1

Â
k=0

�k(x)⌫k(y) .

In this chapter, we will see that for ⌅ = 1 or 4, we can also find a kernel K(⌅)
n

– although quaternionic – such that ✓n|n is an n⇥ n quaternionic determinant

of K(⌅)
n (xi, xj), and which is a quasi projector in the sense of Definition 5.8.

The computation of all k-point densities and gap probabilities will follow from
Corollary 5.10.

7.3 Kernel for beta = 4

We put ourselves in the framework of the master integration lemma for ⌅ = 4
(Lemma 6.5) and the use of skew-orthogonal functions. Namely, let (�i)i↵1
and (⌫i)i↵1 be two sequences of real or complex-valued function in L2(A, µ).
We denote V  L2(A, µ) (resp. W  L2(A, µ)) be the Hilbert space generated
by the �’s (resp. the ⌫’s). Let û : V ⇣ W be the linear operator sending �i to
⌫i for any i ↵ 1. We introduce on V the skew-symmetric bilinear form:

� f , g�4 =
(

R

⇤
f (x)(ûg)(x)� g(x)(û f )(x)

⌅
dµ(x).

We assume that �’s are skew-orthonormal in the sense that:

⌫i, j ↵ 1,
�
��2i, �2j�4 = ��2i�1, �2j�1�4 = 0
��2i�1, �2j�4 = ���2i, �2j�1�4 = ⌃i,j

,

and consider a model where the n-point density correlation is:

(43) ✓
(4)
n|n(x1, . . . , xn) = det

1⌦i⌦2n
1⌦j⌦n

⇤
�i(xj) ⌫i(xj)

⌅
.

The 2n⇥ 2n matrix in the determinant – after simultaneous line and col-
umn permutations – can always be written Qn(A) for the quaternionic matrix
A =

⇤
⇧i(xj)

⌅
ij of size n⇥ n, with:

Q1[⇧i(x)] =
⌦

⌫2i(x) ⌫2i�1(x)
�2i(x) �2i�1(x)

↵
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and its quaternion dual:

Q1[⇧i(x)] =
⌦

�2i�1(x) �⌫2i�1(x)
��2i(x) ⌫2i(x)

↵
.

Then, using the properties of the quaternionic determinant (Lemma 5.5):

(44) ✓
(4)
n|n(x1, . . . , xn) = det Qn(A) = det

H
AA = detH

1⌦i,j⌦n
K(4)

n (xi, xj) ,

with:

K(4)
n (x, y) =

n

Â
k=1

⇧k(x)⇧k(y) .

7.5 lemma. K is a projector of trace n.

Proof. We compute:

Q1(⇧k⇧⇥) =

⌦
⌫2k�2⇥�1 � ⌫2k�1�2⇥ ⌫2k�1⌫2⇥ � ⌫2k⌫2⇥�1
�2k�2⇥�1 � �2k�1�2⇥ �2k�1⌫2⇥ � �2k⌫2⇥�1

↵

Q1(⇧k⇧⇥) =

⌦
�2k�1⌫2⇥ � �2k⌫2⇥�1 �2k�1⌫2⇥�1 � ⌫2k�1�2⇥�1
�2k⌫2⇥ � ⌫2k�2⇥ ⌫2k�2⇥�1 � �2k⌫2⇥�1

↵
.

Let us first look at the trace:

Tr K(4)
n =

n

Â
k=1

(

A

�
⇧k(z)⇧k(z)

⇥(1) dµ(z).

From the expression of ⇧k(z)⇧k(z), the off-diagonal terms are 0, while the in-
tegration of the diagonal terms against dµ(z) reconstructs the skew-products:
we find

Q1

� (

A

⇧k(z)⇧k(z)dµ(z)
 
=

⌦
��2k�1, �2k�4 0

0 ��2k�1, �2k�4

↵
= 12 ,

hence Tr K(4)
n = n. Then, we compute the kernel of the operator K(4)

n ⌃ K(4)
n :

(K(4)
n ⌃ K(4)

n )(x, y) =
n

Â
k,⇥=1

⇧k(x)
� (

A

⇧k(z)⇧⇥(z)dµ(z)
 
⇧⇥(y) .

By skew-orthogonality, the integral yields ⌃k,⇥ (times the identity quaternion),
hence K ⌃ K = K.

7.4 Kernel for beta = 1
Lecture 13 (1h30)
November 18th, 2014

Lecture 14 (1h30)
December 1st, 2014

We put ourselves in the framework of the master integration lemma for ⌅ =
1 (Lemma 6.10) and the use of skew-orthogonal functions. Namely, let s :
A⇥ A ⇣ R be an antisymmetric function, and (�i)i↵1 a sequence of real or
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complex-valued function in L2(A, µ). We introduce:

(ŝ f )(y) =
(

A

s(y, x) f (x)dµ(x)

and the skew-symmetric bilinear form:

� f , g�1 = �ŝ f , g�2 =
(

A

s(y, x) f (x)g(y)dµ(x)dµ(y) .

We assume that �’s are skew-orthonormal:

⌫i, j ↵ 1,
�
��2i, �2j�1 = ��2i�1, �2j�1�1 = 0
��2i�1, �2j�1 = ���2i, �2j�1�1 = ⌃i,j

,

and we consider a model where the n-point density correlation is:

(45) ✓
(1)
n|n(x1, . . . , xn) = pf

1⌦i,j⌦n
s(xj, xi) · det

1⌦i,j⌦n
�i(xj) .

For simplicity, we will assume n = 2m is even. The computations for n odd
are slightly more involved, but also lead to the construction of a kernel which
is a quasi-projector, and we shall give the result in the summary of § 7.5.

Let us define:

Q1(⇧i(x)) =
⌦

�2i(x) �2i�1(x)
ŝ�2i(x) ŝ�2i�1(x)

↵
.

Its quaternion dual is:

Q1(⇧i(x)) =
⌦

ŝ�2i�1(x) ��2i�1(x)
�ŝ�2i(x) �2i(x)

↵
.

We introduce the kernel:

K(1)
n (x, y) =

m�1

Â
k=0

⇧k(x)⇧k(y)� s(x, y)E21 ,

where Eab is the quaternion represented by the elementary 2⇥ 2 matrix with
zero entries except for a 1 at position (a, b). K(1)

n is clearly self-dual and trace-
class.

7.6 lemma. Assume �i(xj) invertible for (x1, . . . , xn) µ⇧n-almost everywhere. Then:

✓n|n(x1, . . . , xn) = detH
1⌦i,j⌦n

K(1)
n (xi, xj) ,

Proof. Let us introduce the n⇥ n matrices A = (�i(xj))ij and S = (s(xj� xi))ij.
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7.4. Kernel for beta = 1

Using the properties of the pfaffian, in particular Lemma 5.2, we can write:

pf S · det A = (�1)m pf(�S) · pf AJN AT = (�1)m pf
2n

Ã ,

with:

Ã :=
⌦

A A⇤T

⇤A ⇤A⇤T � S

↵
,

and for any matrix ⇤ Mn(C). Let P be the matrix of the permutation of S2n
sending 2i� 1 to i, and 2i to i + n for i  J1, nK. Its signature is det P = (�1)m.
Therefore:

pf S · det A = det P · pf B̃ = pf PT ÃP = detHC, Qn(C) = J�1
n Ã .

The self-dual quaternionic matrix C of size n⇥ n indeed takes the form Cij =
K̃(xi, xj; ⇤) for a quaternionic-valued function K̃ depending on ⇤. We now de-
scribe a clever choice of ⇤, for which skew-orthogonality of the �’s will trans-
late for the kernel into the property of being a quasi-projector. For this pur-
pose, we want that �i and ŝ�i both appear in K̃. If we define the n⇥ n matrix
B = [ŝ�i(xj)]ij, we choose:

⇤ = �(A�1B)T .

This is well-defined for (x1, . . . , xn) µ⇧n-almost everywhere since our assump-
tion implies almost-everywhere invertibility of A. Tracking back all transfor-
mations from A to C, we find with this choice:

Cij = K(1)
n (xi, xj)

with the announced expression.

7.7 lemma. K(1)
n is a quasi-projector of trace n:

K(1)
n ⌃ K(1)

n = K(1)
n + [�, K(1)

n ], Q1(�) =

⌦
1/2 0
�1/2 0

↵
.

Proof. We compute the products of quaternionic functions:

Q1(⇧k⇧⇥) =

⌦
�2k · ŝ�2⇥�1 � �2k�1 · ŝ�2⇥ �2k�1 · �2⇥ � �2k · �2⇥�1
ŝ�2k · ŝ�2⇥�1 � ŝ�2k�1 ŝ�2⇥ ŝ�2k�1 · �2⇥ � ŝ�2k · �2⇥�1

↵

Q1(⇧k⇧⇥) =

⌦
ŝ�2k�1 · �2⇥ � �2k�1 · ŝ�2⇥ ŝ�2k�1 · �2⇥�1 � �2k�1 · ŝ�2⇥�1
�2k · ŝ�2⇥ � ŝ�2k · �2⇥ �2k · ŝ�2⇥�1 � ŝ�2k · �2⇥�1

↵
.

Integrating the first equality over dµ(z) and taking the scalar part gives:

Tr K(1)
n =

n/2

Â
k=1

(

A

dµ(z)
�
⇧k(z)⇧k(z)

⇥(1)
= 2��2k�1, �2k�1 = n.
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7. Invariant ensembles: eigenvalue statistics and kernels

Let us compute the kernel of K(1)
n ⌃ K(1)

n :

(K(1)
n ⌃ K(1)

n )(x, y) =
n/2

Â
k,⇥=1

⇧k(x)
� (

A

⇧k(z)⇧⇥(z)dµ(z)
 
⇧⇥(y)(46)

= �
n/2

Â
⇥=1

� (

A

s(x, z)E21⇧⇥(z)dµ(z)
 
⇧⇥(y)

= �
n/2

Â
k=1

⇧k(x)
� (

A

s(z, y) ⇧k(z)E21dµ(z)
 

,

where we have introduce the quaternion Eab represented by the elementary
2⇥ 2 matrix with zero entries except for a 1 in position (a, b). The integral in
the first term is equal to the scalar quaternion 2⌃k,l by skew-orthogonality of
the �’s. We compute:

Q1

� (

A

s(x, z) E21⇧⇥(z)dµ(z)
 

=

⌦
0 0

ŝ�2⇥(x) ŝ�2⇥�1(x)

↵
= Q1(E22⇧⇥(x))

Q1

� (

A

s(z, y)E21⇧k(z)dµ(z)
 

=

⌦
ŝ�2k�1(y) 0
�ŝ�2k(y) 0

↵
= Q1(⇧k(y)E11) .

Therefore:

(K(1)
n ⌃ K(1)

n )(x, y) = 2A� E22 A� E11, A =
n

Â
k=1

⇧k(x)⇧k(y) .

We also remark that:

2E21 � E22E21 � E21E11 = 0.

So we can reconstitute K̃(1)
n (x, y) = A� s(x, y)E21 = Ã in the previous equa-

tion. And we conclude noticing that:

2Ã� E22 Ã� E21 Ã = Ã +
-E11 � E22

2
, Ã
.

.

In this case, we could construct a quasi-projector, but not a projector.

7.5 Summary: kernels and consequences

We have seen that the n-point density in the models (42), (43) and (45) can be
put in the form:

✓
(⌅)
n|n(x1, . . . , xn) = detH

1⌦i,j⌦n
K(⌅)

n (xi, xj).

The kernel K(⌅)
n is always a quasi-projector of trace n, which is quaternionic

for ⌅ = 1, 4, but scalar for ⌅ = 2. Corollary 5.10 yields:
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7.5. Summary: kernels and consequences

7.8 proposition. The k-point density correlation in those models reads:

✓
(⌅)
k|n (x1, . . . , xn) = detH

1⌦i,j⌦k
K(⌅)

n (xi, xj),

and the gap probabilities are:

G
(⌅)
n (J) = DetH(I � K(⌅)

n )L2(µ,J) .

We stress that the kernel depends on n, and that ✓k|n is a k⇥ k quaternionic
determinant: for ⌅ = 2, this is a k ⇥ k determinant, and for ⌅ = 1, 4, this
is a 2k ⇥ 2k pfaffian. Therefore, if we understand the n ⇣ • limit of K(⌅)

n ,
we understand the limit n ⇣ • of all density correlations and of the gap
probabilities.

Let us recollect the expressions for the kernels:

Case beta = 2

K(2)
n (x, y) =

n

Â
k=1

�k(x)⌫k(y).

In the case of unitary invariant ensembles, we have with respect to the
Lebesgue measure:

✓
(2)
n|n(x1, . . . , xn) =

1
’n�1

i=0 hi

�
D(x1, . . . , xn)

⇥2
n

’
i=1

w(xi),

and we have seen in § 6.1 that it can be put in the form (7.5) with:

�i+1(x) = ⌫i+1(x) =

6
w(x)

hi
pi(x).

Here, (pi)i↵0 are the orthogonal polynomials associated to the measure w(x)dx.
Then, K(2)

n is the Christoffel-Darboux kernel and can be readily computed:

7.9 lemma. For any n ↵ 1, we have the Christoffel-Darboux formula:

K(2)
n (x, y) := w1/2(x)w1/2(y)

n�1

Â
k=0

pk(x)pk(y)
hk

=
w1/2(x)w1/2(y)

hn�1

pn(x)pn�1(y)� pn�1(x)pn(y)
x� y

The second equality is very useful, since it only requires the knowledge
of two consecutive orthogonal polynomials to compute the kernel. So, if one
wishes to study the limit n ⇣ • of K(2)

n , it is enough to study the limit of
pn(x). In general, there is no simple formula for pn, so computing this asymp-
totics is a difficult problem. It can be attacked with the so-called Riemann-
Hilbert methods, see e.g. the book of Deift for an introduction.
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7. Invariant ensembles: eigenvalue statistics and kernels

Case ⌅ = 4

The kernel:

(47) Q1
�
K(4)

n (x, y)
⇥
=

⌦
ûxLn(x, y) �ûxûyLn(x, y)

Ln(x, y) �ûyLn(x, y)

↵
,

can be deduced from the scalar function:

Ln(x, y) =
n

Â
k=1

�2k(x)�2k�1(y)� �2k�1(x)�2k(y).

The operator ûx replaces �i(x) by ⌫i(x).
In the case of quaternionic unitary invariant ensembles, we have with re-

spect to Lebesgue measure:

✓
(4)
n|n(x1, . . . , xn) =

1
’n�1

i=0 hi

�
D(x1, . . . , xn)

⇥4
n

’
i=1

w(xi).

We have seen in § 6.2 that it can be brought to the form (7.5), with:

�i+1(x) =

6
w(x)

hi
pi(x), ⌫i+1(x) =

6
w(x)

hi
p◆i(x).

where pi are the skew-orthogonal polynomials associated to:

� f , g�4 =
(

R

�
f (x)g◆(x)� f ◆(x)g(x)

⇥
w(x)dx

=
(

R

�
f (x) · ûg(x)� û f (x) · g(x)

⇥
w(x)dx

=
(

R

�
f (x) · D̂g(x)� D̂ f (x) · g(x)

⇥
w(x)dx.

where we have introduced the operator D̂ = w�1ûw:

(48) D̂ f (x) = w�1/2(x)⇡x
⇧

w1/2(x) f (x)
⌃

.

Because of the equality (48), following the derivation (44), we see that we
can equally replace û by D̂ to define our kernel. Unlike the case of orthog-
onal polynomials and the Christoffel-Darboux formula, there is no simple
and general expression of K(4)

n in terms of a few consecutive skew-orthogonal
polynomials.

Case beta = 1

When n even, the kernel takes the form:

(49) Q1
�
K(1)

n (x, y)
⇥
=

⌦
ŝyRn(x, y) �Rn(x, y)

ŝx ŝyRn(x, y)� s(x, y) �ŝxRn(x, y)

↵
.
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7.5. Summary: kernels and consequences

It be deduced from the scalar function:

Rn(x, y) =
⌧n/2�

Â
k=1

�2k(x)�2k�1(y)� �2k�1(x)�2k(y).

The operator ŝx replaces f (x) by:

ŝ f (x) =
(

A

s(x, z) f (z)dµ(z).

When n is odd, the kernel contains an additional term:

Q1
�
K(1)

n,odd(x, y)
⇥
=

⌦
�n+1(x) 0

(ŝ�n+1)(y)� (ŝ�n+1)(x) �n+1(y)

↵
,

where �n+1 completes the skew-orthonormal family �1, . . . , �n, i.e.

⌫k  J1, nK, ��k, �n+1�1 = ⌃k,n,

and must be chosen such that:
(

A

�n+1(x)dµ(x) = 1.

In the case of orthogonal invariant ensembles, we have with respect to
Lebesgue measure:

✓
(1)
n|n(x1, . . . , xn) =

1
hn,odd · ’n/2�1

i=0 hi

⌥⌥D(x1, . . . , xn)
⌥⌥

n

’
i=1

w(xi),

where the factor hn,odd only occurs when n is odd. We have seen in § 6.3 that
it can be written in the form (45) with s(x, y) = sgn(x� y) and:

⌫i  J0, n� 1K, �i+1(x) =

6
w(x)
h⌧i/2�

pi(x).

These expressions involve the skew-orthogonal polynomials (pi)i↵0 for the
skew-bilinear form:

� f , g�4 =
(

R2

sgn(y� x) f (x)g(y)dµ(x)dµ(y).

When n is odd, we also have:

�n(x) =
3

w(x)
hn,odd

pn(x), hn,odd =
(

R

p2n(z)w(z)dz.
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7. Invariant ensembles: eigenvalue statistics and kernels

The operator ŝ is:

ŝ f (x) =
(

R

sgn(x� z) f (z)w(z)dz = 2
x(

�•

f (z)w(z)dz�
(

R

f (z)w(z)dz,

therefore:
⇡xŝx f = f (x)w(x).

In other words, ŝx is a right inverse for w(x)�1⇡x. As for the quaternionic
unitary case and unlike the unitary case, there is no simple and general ex-
pression for K(1)

n in terms of a few consecutive skew-orthogonal polynomials.
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8 Gaussian invariant ensembles

Lecture 15 (1h30)
December 2nd, 2014In this chapter, we focus on the Gaussian ensemble of random matrices Mn 

Hn,⌅. These are invariant ensembles for which the n-point density correlation
of the eigenvalues – with respect to Lebesgue measure – is:

✓
(⌅)
n|n(x1, . . . , xn) µ

⌥⌥D(x1, . . . , xn)
⌥⌥⌅

n

’
i=1

w⌅(xi),

and we choose the normalisation:

w2(x) = w4(x) := w(x) =
e�x2/2
 

2⇣
, w1(x) = w1/2(x) =

e�x2/4

(2⇣)1/4 .

The Gaussian ensembles form of the few instances where the (skew)-orthogonal
polynomials can be computed in a simple way. We then study the kernels, and
their n ⇣ • limit.

8.1 Hermite polynomials

The orthogonal polynomials for the measure:

d✏(x) = w(x)dx, w(x) =
e�x2/2
 

2⇣

are called Hermite polynomials. We denote them (Hk(x))k↵0. Let us summa-
rize their properties:

8.1 lemma. For any n ↵ 0, with the convention H�1 = 0:

• Hn has parity (�1)n.

• H◆n(x) = nHn�1(x).

• The norm of Hn is hn = n!.

• H0 = 1, and Hn+1(x) = xHn(x)� nHn�1(x).

• H◆◆n (x)� xH◆n(x) + nHn(x) = 0.

• We have the formula Hn(x) = (�1)nex2/2 ⇡n
x
�
e�x2/2⇥.

Proof. Since µ is even, Hn must have parity (�1)n. H◆n is a degree n� 1 poly-
nomial, so decomposes on the basis (Hk)0⌦k⌦n�1. Integration by parts yields:

(H◆n|Hm) + (Hn|H◆m)� (Hn|xHm) = 0.

For m ⌦ n � 2, the two last term are 0 by orthogonality. For m = n � 1,
the second is zero, while the third term is (Hn|xHn�1) = (Hn|Hn + · · · ),
where the · · · represent a polynomial of degree ⌦ n � 1. By orthogonality,
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8. Gaussian invariant ensembles

(Hn|xHn�1) = hn. Thus:

H◆n(x) =
hn

hn�1
Hn�1(x).

and comparing the coefficient of the leading term, we find hn = nhn�1. Since
H0 = 1 and the measure µ has total mass 1, we have h0 = 1 and by recursion:

H◆n(x) = nHn�1, hn = n! .

The 3-term recurrence relation is then given by Lemma 9.1 in next Chapter,
using the fact that ⌅n = (xHn|Hn) = 0 for parity reasons. Using H◆n = nHn�1
then translates the 3-term recurrence relation into a differential equation of
order 2 for Hn. It is straightforward to check that the given expression for
Hn is the unique solution the 3-term recurrence relation with initial condition
H0(x) = 1 and H1(x) = x.

It is convenient to define the Hermite wave functions:

⌫n ↵ 0, �n(x) = w1/2(x)
Hn(x) 

hn
=

e�x2/4Hn(x)
(2⇣)1/4

 
n!

,

which form an orthonormal Hilbert basis on L2(R) equipped with the Lebesgue
measure: (

R

�n(x)�m(x)dx = 0.

Their properties can be directly established from Lemma 8.1:

8.2 lemma. For any n ↵ 0:

• x�n(x) =
 

n + 1�n+1(x) +
 

n� 1�n�1(x).

• (�⇡2
x + x2/4)�n(x) = (n + 1/2)�n(x).

• We have the integral representation:

�n(x) =
in ex2/4

(2⇣)1/4
 

n!

(

R

dz zn e�z2/2�ixz .

Remark. As we observe on the differential equation, �n(x) are the eigenvec-
tors of the self-adjoint operator H = �⇡2

x + x2/4 on L2(R), and the corre-
sponding eigenvalues are (n + 1/2), indexed by n ↵ 0. In quantum mechan-
ics, H is the hamiltonian of the harmonic oscillator. It turns out that, after
separation of the angular variables in the hamiltonian of the hydrogen atom,
one is left with an hamiltonian of the form H governing the radial part of
the electron wave function, so the Hermite wave functions also appear in this
problem.
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8.2. Moments of Gaussian hermitian matrices

8.2 Moments of Gaussian hermitian matrices

We focus on ⌅ = 2. The Christoffel-Darboux kernel is:

K(2)
n (x, y) =

e�(x2+y2)/4
 

2⇣
Hn(x)Hn�1(y)� Hn�1(x)Hn(y)

(n� 1)! (x� y)
.

It can be written in terms of the Hermite wave functions:

K(2)
n (x, y) =

 
n
�n(x)�n�1(y)� �n(x)�n�1(y)

x� y
.

The generating series of moments of the eigenvalues can be evaluated explic-
itly.

8.3 proposition. For any n ↵ 1, we have:

1
n

En
⇤
Tr esM⌅ = es2/2

� n�1

Â
k=0

Cat(k)
n(n� 1) · · · (n� k)

nk
(s
 

n)2k

(2k)!

 
.

Proof. Denote An(s) the right-hand side. We have by definition of the 1-point
density correlation (see Definition 7.1):

(50) An(s) =
1
n

E
- n

Â
i=1

es�i
.
=

1
n

(

R

✓
(2)
1|n(x) esxdx .

Although f (x) = esx is not bounded, the integral is absolutely convergent
due to the gaussian tails of ✓(2)1|n(x), so we can use the approximation fm(x) =
min(esx, m) which is bounded continuous for any m, and converges pointwise
to f (x) = esx, and dominated convergence to write (50). The general formula
in ⌅ = 2 invariant ensembles gives:

✓
(2)
1|n = K(2)

n (x, x) =
 

n
�
�◆n(x)�n�1(x)� �◆n�1(x)�n(x)

⇥
.

With integration by parts:

An(s) =
1

s
 

n

(

R

dxesx�� �◆◆n(x)�n�1(x) + �◆◆n�1(x), �n(x)
⇥

and using the differential equation for Hermite wave functions:

An(s) =
1

s
 

n

(

R

esx�n(x)�n�1(x) =
1

s n!

(

R

e�x2/2+sx Hn(x)Hn�1(x)
dx 
2⇣

=
es2/2

s n!

(

R

Hn(x + s)Hn�1(x + s)w(x)dx .
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8. Gaussian invariant ensembles

Using the explicit formula for the Hermite polynomials, it is easy to show:

Hn(x + s) =
n

Â
k=0

⌦
n
k

↵
Hn�k(x) sk .

Therefore, we can compute An(s) using orthogonality of the Hermite polyno-
mials with respect to w(x)dx:

An(s) =
es2/2

s n!

� n

Â
k=1

⌦
n
k

↵⌦
n� 1
k� 1

↵
s2k�1 (n� k)!

✏
,

which can be rewritten in the announced form.

It is easy to take the large n limit of this formula, and we deduce a proof of
Wigner theorem in the case of hermitian Gaussian random matrices. Remind
the definition of the empirical measure:

L(Mn) =
1
n

n

Â
i=1

⌃
�
(Mn)
i

,

where �i := �
(Mn)
i are the eigenvalues of A.

8.4 corollary. L(M̃n) converges weakly in expectation to the semi-circle law.

Proof. Let M̃n = n�1/2Mn. The Fourier transform of the empirical measure of
M̃n is:

En

- (
eisxdL(M̃n)(x)

.
=

1
n

E
- n

Â
i=1

es�i/
 

n
.
= An(s/

 
n) .

From Lemma 8.3, we deduce:

lim
n⇣•

An(s/
 

n) =
•

Â
k=0

Cat(k)
s2k

(2k)!
, Cat(k) =

1
k + 1

⌦
2k

k + 1

↵
.

We recognize in the coefficients the moments of the semi-circle law (Lemma 3.2):

lim
n⇣•

An(s/
 

n) =
(

R

eisxdµsc(x), dµsc(x) =
dx
2⇣

3
4� x2 · 1[�2,2](x) .

Pointwise convergence of the expectation value of the Fourier transform of
L(M̃n) to that of µsc implies weak convergence in expectation of L(M̃n) towards
µsc.

This convergence, as we already pointed out in § 3.7, does not give the con-
vergence in probability n�1/2�max ⇣ 2. But the exact evaluation of moments
provides us much more precise information that Wigner’s theorem:

8.5 proposition (Ledoux bound). There exist constants c1, c2 > 0 independent of
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8.2. Moments of Gaussian hermitian matrices

n such that, for any ⌦ > 0,

Pn

-�max

2
 

n
↵ en�2/3t

.
⌦ c1t�3/4 e�c2t3/2

.

In particular, n�1/2�max ⇣ 2 in probability when n ⇣ •.

This suggests that �max =
 

n
⇤
2 + O(n�2/3)

⌅
= 2

 
n + O(n�1/6) where

the O(· · · ) represent fluctuations. We shall see later that this is indeed the
correct scale, and we shall characterise the distribution of these fluctuations.

Proof. Since we already know the k-th moments converge to Cat(k), let us
decompose:

1
n

E
⇤

Tr M̃2k
n
⌅
= Cat(k)mn(k) .

We have by construction of the exponential generating series:

An(s/
 

n) =
•

Â
k=0

Cat(k)mn(k)
s2k

(2k)!
.

and the mn(k) are positive and be explicitly by collecting the powers of s2 in
Lemma 8.3. One finds – this is an exercise left to the reader – that they satisfy
the recursion:

mn(k + 1) = mn(k) +
k(k + 1)

4n2 mn(k� 1).

In particular, we deduce that mn(k) is increasing, and:

mn(k) ⌦ mn(k + 1) ⌦ mn(k)
�

1 +
k(k + 1)

4n2

 
,

and thus:

mn(k + 1) ⌦
k

’
⇥=0

�
1 +

⇥(⇥+ 1)
4n2

 

⌦ exp
� k

Â
⇥=0

⇥(⇥+ 1)
4n2

✏
= exp

� k(k + 1)(k + 2)
12n2

 
⌦ ec0k3/n2

for some constant c0 > 0, e.g. c0 = 1/2. Now, we can use Markov inequality
to write, for any k ↵ 1:

Pn

-�max

2
 

n
↵ eu

.
⌦ e�2ku En

⇤
(�max/2

 
n)2k⌅ ⌦ ne�2ku4�k · 1

n
E
⇤

Tr M̃2k
n
⌅

⌦ ne�2ku 4�kCat(k) ec0k3/n2
.

When k is large, we have 4�kCat(k) � (⇣k)�1/2. If n is large, we see that the
bound remains non trivial in the regime where k = �n2/3 and u = n�2/3t with

121



8. Gaussian invariant ensembles

t and � finite. There exists c > 0 such that:

Pn

-�max

2
 

n
↵ en�2/3t

.
⌦ c ��3/2 e�2�t+c0�

3
.

We can choose for instance to optimize the term in the exponential, by choos-
ing � := n�2/3⌧n2/3t1/2� � t when n ⇣ •. Thus, we obtain an upper bound
of the form:

Pn

-�max

2
 

n
↵ en�2/3t

.
⌦ c1 t�3/4 e�c2t3/2

for constants c1, c2 > 0 independent of n. It remains the justify the convergence
in probability. If ⌥ > 0, we take tn(⌥) = n2/3 ln(1 + ⌥) in the previous bound.
Since tn(⌥)⇣ +•, the right-hand side goes to 0 when n ⇣ • and we have:

lim
n⇣•

Pn

-�max

2
 

n
↵ 1 + ⌥

.
= 0.

For the lower bound, we can repeat the argument of Lemma 3.22 using the
version of Wigner theorem we proved here in Lemma 8.4.

8.3 Skew-orthogonal polynomials for beta = 4

We shall construct the skew-orthogonal polynomials for:

� f , g�4 =
(

R

�
f (x)g◆(x)� f ◆(x)g(x)

⇥
w(x)dx, w(x) =

e�x2/2
 

2⇣
.

8.6 lemma. Let H̃2n+1 = H2n+1, and define:

H̃2n =
n

Â
k=0

n!
k!

2n�k H2k.

(H̃n)n↵0 is a family of skew-orthogonal polynomials, with �H̃2n, H̃2n+1�4 = h̃n =
(2n + 1)!.

Proof. For parity reasons, we have �H2n, H2m�4 = �H2n+1, H2m+1�4 = 0. And,
using H◆n = nHn�1, we compute:

�H2n, H2m+1�4 = (2m + 1)�H2n, H2m�2 � 2n�H2n�1, H2m+1�2
= (2n + 1)!⌃n,m � (2n)!⌃n,m+1.

Using the definition of H̃’s, we compute:

�H̃2n, H̃2m+1�4 =
n

Â
k=0

n!
k!

2n�k�H2k, H2m+1�4

=
n

Â
k=0

n!
k!

2n�k�⌃k,m(2k + 1)!� (2k)!⌃k,m+1
⇥
.
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8.3. Skew-orthogonal polynomials for beta = 4

It vanishes for m > n. For n = m, we find:

h̃n := �H̃2n, H̃2n+1�4 = (2n + 1)!

while for m < n:

�H̃2n, H̃2m+1�4 = n! 2n
� (2m + 1)!

m!2m � (2m + 2)!
(m + 1)!2m+1

 
= 0.

It will be convenient to have an alternative representation for H̃2n:

8.7 lemma. For any n ↵ 0:

H̃2n =
ex2/4

2

•(

x

e�y2/4 H2n+1(y).

Proof. Let us define the two integrals:

In(x) :=
ex2/4

2

•(

x

e�y2/4 H2n+1(y)dy, Jn(x) :=
ex2/4

2

•(

x

e�y2/4 yH2n(y)dy.

We have by integration by parts:

Jn(x) = ex2/4⇤� e�y2/4H2n
⌅•

x + ex2/4
•(

x

e�y2/4 H◆2n(y)dy = H2n(x)+ 4n In�1(x),

using H◆2n = 2nH2n�1. And, using the 3-term recurrence relation for Hermite
polynomials:

In(x) = Jn(x)� 2n In�1(x).

Combining these two relations gives:

In(x) = H2n(x) + 2n In�1(x),

and we have the initial condition:

I0(x) =
ex2/4

2

•(

x

e�y2/4y dy = 1.

This is the same initial condition and recurrence relation that is satisfied by
H̃2n, thus In = H̃2n for any n ↵ 0.

We can now address the computation of the kernel K(4)
n . From § 7.5, we

learned that its matrix elements can all be deduced from each other. For in-
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8. Gaussian invariant ensembles

stance, it is enough to compute the (1, 1) entry:

ûxL(x, y) =
e�(x2+y2)/4
 

2⇣

n�1

Â
k=0

D̂H̃2k+1(x) · H̃2k(y)� ûH̃2k(x) · H̃2k+1(y)
h̃k

,

where D̂ = w1/2ûw�1/2 is the operator:

D̂ f (x) = w1/2⇡x(w�1/2 f(x)) = ex2/4⇡x
⇧

e�x2/4 f (x)
⌃

.

8.8 proposition. The (1, 1) entry of K(4)
n (x, y) is:

ûxL(x, y) =
K(2)

2n (x, y)
2

� e�x2/4
 

2⇣
H2n(x)

4

•(

x

e�y2/4 H2n�1(y)dy.

Proof. Lemma 8.7 tells us:

(51) D̂H̃2n = �H2n+1
2

.

We compute directly, using the 3-term recurrence relation:

(52) D̂H̃2n+1 = (2n + 1)H2n �
x
2

H2n+1 =
1
2
�
� H2n+2 + (2n + 1)H2n

⇥
,

and we remind the recurrence relation obvious from Lemma 8.6:

H̃2n = H2n + 2nH̃2n�2.

Therefore:

D̂xL(x, y) =
w1/2(x)w1/2(y)

2

⇥
� n�1

Â
k=0

H2k(x)
⇤
H2k(y) + 2kH̃2k�2(y)

⌅

(2k)!
� H2k+2(x) · H̃2k(y)

(2k + 1)!

+
H2k+1(x) · H2k+1(y)

(2k + 1)!

✏
.

We recognize in the first and third term half the Christoffel-Darboux kernel of
size 2n, and remains a telescopic sum:

D̂xL(x, y) =
K(2)

2n (x, y)
2

+
w1/2(x)w1/2(y)

2

� n�1

Â
k=0

H2k(x)H̃2k�2(y)
(2k� 1)!

� H2k+2(x)H̃2k(y)
(2k + 1)!

✏

=
K(2)

2n (x, y)
2

� w1/2(x)w1/2(y)
2 (2n� 1)!

H2n(x) · H̃2n�2(y) ,

hence the result.

It is then easy to reconstruct the other entries of K(4)
n using (51)-(52).
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8.4. Skew-orthogonal polynomials for beta = 1

8.4 Skew-orthogonal polynomials for beta = 1
Lecture 16 (1h30)
December 8th, 2014Here, we choose another normalization for the Gaussian weight, namely:

w1(x) = w1/2(x) =
e�x2/4

(2⇣)1/4 .

The reason is that we find that skew-orthogonal polynomials for w1(x)dx are
related to Hn(x) – whereas they would be related to 2�n/2Hn(

 
2x) for the

weight w(x).
The skew-bilinear form is:

� f , g�1 =
(

R

sgn(y� x) f (x)g(y)w1(x)w1(y)dxdy = �w�1
1 · ŝ f , g�2.

It can be rewritten in terms of the operator ŝ defined such that:

ŝ f (x)
w1(x)

:=
(

R

sgn(x� z) f (z)
w1(z)
w1(x)

dz = �2ex2/4
•(

x

f (z) e�z2/4dz+
(

R

f (z)
w1(z)
w1(x)

dz,

and the usual scalar product:

� f , g�2 =
(

R

f (x)g(x)w(x)dx.

In particular:

(53)
ŝH2n+1(x)

w1(x)
= �4H̃2n(x).

We have used that the total integral over R vanishes by parity, and recognized
the function H̃2n(x) met in Lemma 8.7.

8.9 lemma. Define Ȟ2n = H2n and Ȟ2n+1 = H2n+1 � 2nH2n�1. Then, (Ȟn)n↵0
is a family of skew-orthogonal polynomials with:

ȟn = �Ȟ2n, Ȟ2n+1�1 = 4 (2n)! .

Proof. For parity reasons,

⌫n, m ↵ 0, �H2n, H2m�1 = �H2n+1, H2m+1�1 = 0 .

We compute using Lemma 8.6 to represent H̃2n:

�H2n, H2m+1�1 = ��H2m+1, H2n�1 = 4�H̃2m, H2n�2

=
2m+2 m!

2n n!
(2n)! .(54)

if n ⌦ m, and 0 otherwise. Then, defining Ȟ2n = H2n and Ȟ2n+1 = H2n+1 �
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8. Gaussian invariant ensembles

2nH2n�1 satisfy the skew-orthogonality relations. And:

ȟn = �Ȟ2n, Ȟ2n+1�1 = 4 (2n)! .

As we have seen in § 7.5, the kernel K(1)
n can be deduced from its (1, 1)

matrix element:

ŝyR(x, y) = w1/2
1 (x)w1/2

1 (y)
⌧n/2��1

Â
k=0

Ȟ2k+1(x) · ŝȞ2k(y)� Ȟ2k(x) · ŝȞ2k+1(y)
ȟk

.

8.10 proposition. Let m = ⌧n/2�. We have:

ŝyR(x, y) = w�1/2
1 (x)w1/2

1 (y)K(2)
2m (x, y)+

w1/2
1 (x)w1/2

1 (y)
4 (2m� 1)!

H2m�1(x) · ŝH2m(y) .

Proof. From Equation (53), the definition of Ȟ’s and Lemma 8.6 for the H̃’s:

(55)
ŝȞ2k+1(y)

w1(y)
= �4

�
H̃2k(y)� 2kH̃2k�2(y)

⇥
= �4H2k(y) .

We also need to compute ŝȞ2k(y) = ŝH2k(y). For this, we remark:

D̂
1 ŝȞ2k(y)

w1(y)

2
= 2H2k(y) ,

with the operator D̂ = w�1
1 ⇡xw1 defined in (48). It can be compared to the

formula 52:

D̂H2k+1 =
1
2

�
� H2k+2 + (2k + 1)H2k

 
.

Therefore, there exists a constant ck such that:

(56) (2k + 1)
ŝH2k(y)
w1(y)

� ŝH2k+2
w1(y)

= 4H2k+1(y) .

This identity is obtained by integration of w�1(x)ûx = ⇡x, and the integration
constant here is 0 since ŝH2k(0) = 0 by parity of H2k. Now, we can compute:

ŝyR(x, y) = w1/2
1 (x)w1/2

1 (y)
m/2�1

Â
k=0

⇤
H2k+1(x)� 2kH2k�1(x)

⌅
· ŝH2k(y)� H2k(x) · ŝȞ2k+1(y)

4 (2k)!

= w1/2
1 (x)w3/2

1 (y)
m/2�1

Â
k=0

H2k+1(x)H2k+1(y)
4 (2k + 1)!

+
H2k+1(x) · ŝH2k+2(y)

4 (2k + 1)! w1(y)

�H2k�1(x)ŝH2k(y)
4 (2k� 1)! w1(y)

+
H2k(x)H2k(y)

(2k)!
.

We recognize the Hermite Christoffel-Darboux kernel, namely if we recall
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8.5. Asymptotics of Hermite polynomials

w1(x) = w1/2(x):

ŝyR(x, y) =

6
w1(y)
w1(x)

K(2)
2m (x, y) +

w1/2
1 (x)w1/2

1 (y)
4 (2m� 1)!

H2m�1(x) · ŝH2m(y) ,

which is the announced formula.

It is then easy to reconstruct the other entries of K(1)
n using (55)-(56), as

well as:
D̂x

1 ŝ f (x)
w1(x)

2
= f (x) .

8.5 Asymptotics of Hermite polynomials

The integral formula of Lemma 8.2 for the Hermite polynomial is convenient
to derive the large n asymptotics of Hn(x). First, we want to argue that a
priori, three regimes of x will occur. Recall Heine formula (Lemma 6.15):

Hn(x) = En

- n

’
i=1

(x� �i)
.

.

We know from Wigner theorem that the �i are typically distributed, in the
large n limit, in a segment [�2

 
n, 2
 

n]. So, the function ’n
i=1(x� �i) is typ-

ically of constant sign when |x| ✏ 2
 

n. This suggests that most of the n
zeroes of Hn(x) accumulate19 in [�2

 
n, 2
 

n], and we can expect then to be
smoothly spaced, i.e. the typical spacing should be O(n�1/2). So, in the regime
n ⇣ •, we expect the asymptotics of Hn(x) to be:

• of oscillatory nature, with oscillations at scale n�1/2, whenever |x| <
2
 

n far away from the edges. This is the bulk regime.

• of exponential nature (without zeroes at leading order) when |x|✏ 2
 

n.

and there should exist a crossover between the two regimes x approaches
±2
 

n at a rate depending on n: this is the edge regime. We will indeed find
this dichotomy by computation. The regime |x| ✏ 2

 
n is less interesting.

Indeed, it probes eigenvalues statistics in regions where only a finite number
of them can be typically, and they typically behave like independent r.v. For
this reason, we focus on the bulk and edge regime.

We remind that the Airy function is the solution of the differential equation
f ◆◆(x) = x f (x) expressed as:

Ai(x) =
(

R

dz
2⇣

e�iz3/3�izx .

19Actually, one can prove that the distribution of zeroes of the orthogonal polynomials has
the same limit law – the so-called equilibrium measure described in Chapter 10 – as those of
eigenvalues. For such results, see the book of Deift.
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8.11 proposition (Plancherel-Rotach asymptotics). Let s be an integer, and X be
a real number independent of n. In the bulk: we fix x0 ]� 2, 2[ and we have

(57) �n+s
�
n1/2x0 + n�1/2X

⇥
=

2 cos
⇤
⌘n(x0, X, s)

⌅

n1/4
 

2⇣(4� x2
0)

1/4
+ O(n�3/4) ,

with the phase:

⌘n(x0, X, s) = (n+ s+ 1)arcsin(x0/2)� ⇣(n + s)
2

+
nx0

4
4� x2

0

4
+

X
4

4� x2
0

2
.

At the edge, we have:

(58) �n+s
�
2
 

n + n�1/6X
⇥
= n�1/12Ai(X) + O(n�5/12) .

These asymptotics are uniform with respect to differentiation.

Proof. We start from the integral representation in Lemma 8.2:

(59) �n+s(n1/2x) =
in enx2/4

(2⇣)1/4
 

n!
�̃n+s(n1/2x) ,

with focus on the integral:

(60) �̃n+s(n1/2x) =
(

R

dz zs ei
 

n(x0�x)z e�Sn(z) ,

with:
S(z) = �n ln z + z2/2 + i

 
nx0z.

At this stage, we consider x = x0 + o(1) when n ⇣ •, for some x0  R. The
strategy to derive the large n asymptotics of such integrals is called ”steepest
descent analysis”. Firstly, we look for ”approximate” critical points of S, i.e.
points z  C such that S◆n(z) = �(n + s)/z + z + i

 
nx = 0. Dropping the

term proportional to s and replacing x by x0 at leading order, we find two
approximate critical points at z± with:

z± :=
 

n
2

�
� ix0 ±

4
4� x2

0

 
.

The game consists in moving the contour (here R) in the complex plane to pass
through critical points and follow ”steepest descent contours” to join •, i.e.
in a direction when Re Sn(x; z) decreases the most. The constraint in doing so
is that the asymptotic direction of the contour at • should remain in a region
of convergence of the integral – here |arg z| < ⇣/4 or |⇣ � arg z| < ⇣/4. We
must discuss several cases:

• For |x0| < 2, the steepest descent contour homologous to R is the union
of two paths  � and  +, passing through z± and 0 (Figure 10).

• For |x0| = 2, it passes through z+ = z� (Figure 11).
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• For |x0| > 2, it passes through z+ = �i
 

n
2
�
x0 �

4
x2

0 � 4
⇥

(Figure 12).

!!" !# " # !"

!#

"

#

Figure 10: Level lines of S for x0 = 1 and n = 4. We recognize the two saddle
points z±, and the steepest descent contour passes through the saddles and is
normal to the level lines at every point.

We shall treat in detail the cases |x0| < 2 and x0 = 2. The case x0 = �2
follows by parity, and the regime |x0| > 2 is technically similar to |x0| < 2
and left to the reader. Then, it is convenient to set x0 = 2 sin ⌘0 for ⌘0 
]� ⇣/2,⇣/2]. This leads to:

z� =
 

n� e�i�⌘0 , �  {�1, 1}.

To analyze the local behavior of S at the critical point, we compute the Hessian:

S◆◆(z�) =
n
z2
�
+ 1 =

4
4� x2

0

2

�4
4� x2

0 + i�x0

 
=
4

4� x2
0 ei�⌘0 .

Case |x0| < 2. S◆◆(z�) does not vanish and is of order 1. This suggests, on the
integration path  ±, to use the new variable z = zn,± + ⇠. We then then collect
all terms in Sn,x(z) that contribute up to o(1) when n ⇣ •. This also suggests
the natural scaling

x� x0 = X/n

in (60). For ⇠ in a compact independent of n, the third derivative of S is
O(n�1/2), and the extra term

 
n(x � x0)⇠ is also O(n�1/2). Therefore, by
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!!" !# " # !"
!!"

!#

"

#

!"

Figure 11: Level lines of S and steepest descent contour for x0 = 2, n = 4.
The saddle point of order 3 arises from the collision between the two saddles
when x0 ⇣ 2.

!! !" # " !
!$

!%

!!

#

!

%

Figure 12: Level lines of S and steepest descent contour for x0 = 2.5, n = 4.
The second saddle does not contribute at leading order.
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Taylor expansion with integral remainder at third order for S, we obtain:

zs e�S(z)+i
 

n(x0�x)z =
� 

n� e�i�⌘0
⇥n+s exp

-
i� e�i�⌘0 X� n +

ne�2i�⌘0

2

.

⇥e�S◆◆(z�)⇠2/2�iX⇠�1 + O(n�1/2)
⇥
,

and the remainder term is integrable when ⇠ ⇣ • along the contour – because
the prefactor is decaying exponentially. Therefore, we obtain:

�̃n+s(
 

nx) =

�
Â
�=±1

� 
n� e�i�⌘0

⇥n+s
5

⇣

S◆◆(z�)
e�X2/2S◆◆(z�)

⇥ exp
-
i� e�i�⌘0 X� n +

ne�2i�⌘0

2

.✏
·
�
1 + O(n�1/2)

⇥
.

Taking into account the prefactor in (60) and using Stirling formula, we arrive
to the announced result (57) after a tedious algebra.

Case x0 = 2. The two critical points have coalesced z+ = z� = z0 := �i
 

n,
thus leading to S◆◆(z0) = 0. The leading contribution in Taylor formula now
comes from the third order:

S◆◆◆(z0) =
2i 

n
.

This suggest to define z = z0 + n1/6⇠ so that the main contribution to the
integral comes from finite range in the new variable ⇠. Then, the fourth order
remainder in Taylor formula is of order (n1/6⇠)4 · S◆◆◆◆(z0 + n1/6⇠)  O(n�1/3),
uniformly for ⇠ in any compact independent of n. This also suggests to set

x� x0 = n�2/3X

for X independent of n. Then:

dz zs e�S(z)+i
 

n(x0�x)z = d⇠ n1/6 (�i
 

n)n+s e�3n/2 e�
i⇠3
3 �iX⇠

⇥
�
1 + O(n�1/3)

⇥
.

Therefore:

�̃n+s(
 

nx) = n1/6 (�i
 

n)n+s e�3n/2 Ai(X) ·
�
1 + O(n�1/3)

⇥
,

and (58) follows from a (slightly less) tedious but straightforward algebra.

8.6 Limit laws

Thanks to the asymptotics of the Hermite Christoffel-Darboux kernel, we can
compute the laws governing the statistics of eigenvalues in the bulk at the
edge. Though these expressions are computed in the Gaussian ensemble, they
are universal, i.e. hold in a large class of invariant ensemble, as well as Wigner
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matrices. These universal law depend only on ⌅, i.e. the symmetry class con-
sidered.

Spectral density

First, we have a new proof of Wigner theorem for Gaussian matrices with
⌅ = 1, 2, 4 by direct computation. A much simpler proof will be given in
Chapter 10.

8.12 proposition. The 1-point density correlation – also called spectral densities

– in the Gaussian ⌅ ensembles for ⌅  {1, 2, 4} converges to the semi-circle law:

✓sc(x0) =

4
4� x2

0

2⇣
· 1[�2,2](x0)

after suitable normalisation. Namely:

lim
n⇣•

n�1/2✓
(2)
1|n(n

1/2x0) = ✓sc(x0),

lim
n⇣•

(2n)�1/2✓
(4)
1|n((2n)1/2x0) = ✓sc(x0),

lim
n⇣•

n�1/2✓
(1)
1|n(n

1/2x0) = ✓sc(x0).

Proof. (⌅ = 2) For ⌅ = 2, its expression is

✓
(2)
n (x) = K(2)

n (x, x) =
 

n
⇤
�◆n(x)�n�1(x)� �◆n�1(x)�n(x)

⌅
.

If we set x = n1/2x0, the differentiation is represented by ⇡x = n�1/2⇡x0 . The
Plancherel-Rotach asymptotics give:

�◆n+s(x) =
2n�3/4

 
2⇣(4� x2

0)
1/4

�
�

x0 cos
⇤
⌘n(x0, 0, s)

⌅

2(4� x2
0)

� ⇡x0⌘n(x0, 0, s) sin
⇤
⌘n(x0, 0, s)

⌅✏
.

We observe that:

⌘n(x0, 0, s) = n

⇣
� arccos(x0/2) +

x0

4
4� x2

0

4

⌘
+ O(1)

⇡x0⌘n(x0, 0, s) =
n
2

4
4� x2

0 + O(1)

is independent of s to leading order. Thus:

⇡x0⌘n(x0, 0, s) · �◆n+s(x) = �
n1/4(4� x2

0)
1/4

 
2⇣

1
sin
⇤
⌘n(x0, 0, s)

⌅
+ O(1/n)

2
,
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and:

K(2)
n (x, x) =

2n1/2

2⇣

1
cos
⇤
⌘n(x0, 0,�1)

⌅
sin
⇤
⌘n(x0, 0, 0)

⌅

� cos
⇤
⌘n(x0, 0, 0)

⌅
sin
⇤
⌘n(x0, 0,�1)

⌅
+ O(n�1/2)

2

=
2n1/2

2⇣
sin
⇤
⌘n(x0, 0, 0)� ⌘n(x0, 0,�1)

⌅
+ O(1)

=
2n1/2

2⇣
sin
⇤
arccos(x0/2)

⌅
+ O(1)

=
n1/2

2⇣

4
4� x2

0 + O(1) .

We will only sketch the computations needed for the cases ⌅ = 1 and 4.

Proof. (⌅ = 4). We use the expression (47) for the kernel, and our recent com-
putation of the diagonal matrix elements – the (1, 1) and the (2, 2) elements
are identical by antisymmetry of L(x, y) – in Lemma 8.8:

✓
(4)
1|n(x) =

1
2

Tr
⇤
Q1(K

(4)
n (x, x))

⌅

=
1
2

�
K(2

2n)(x, x)� e�x2/4

2⇣
H2n(x)

•(

x

e�y2/4 H2n(y)dy
 

=
1
2

�
✓
(1)
1|2n(x)� e�x2/4

2⇣ (2n� 1)!
H2n(x)

•(

x

e�y2/4 H2n(y)dy
 

.(61)

In the regime x = (2n)1/2x0 with x0 ]� 2, 2[, one can check that the second
term is O(1/n) – in particular one should perform the change of variable
y = n1/2x0 + n�1/2Y, and use the fact that H2n is decaying exponentially fast
outside of [�2

 
n, 2
 

n]. Since we have seen for ⌅ = 2 that the first term is
O(n�1/2), we deduce:

✓
(4)
1|n(x) = (2n)1/2 ✓sc(x0) + O(1) .

Proof. (⌅ = 1). We use the expression (49) for the kernel, and our recent com-
putation of the diagonal matrix elements – the (1, 1) and the (2, 2) are identical
by antisymmetry of R(x, y) – in Lemma 8.10. Let m = ⌧n/2�.

✓
(1)
1|n =

1
2

Tr
⇤
Q1(K

(1)
n (x, x))

⌅

= K2m(x, x) +
e�x2/8�y2/8

4 (2⇣)1/4 (2m� 1)!
H2m�1(x) · ŝH2m(x) .(62)
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Once again, we find that the second term is O(1/m). And, for n odd, the extra
term that should be added to the kernel is also O(1/m). Therefore:

✓
(1)
1|n(x) = n1/2✓

(2)
1|n(x0) + O(1)

independently of the parity of n.

Eigenvalue statistics for the G⌅E

We can also deduce the asymptotics of the Christoffel-Darboux kernel. Let us
define the sine kernel and the Airy kernel:

Ksin(x, y) =
sin⇣(x� y)
⇣(x� y)

, KAiry(x, y) =
Ai(x)Ai◆(y)�Ai◆(x)Ai(y)

x� y
.

For ⌅ = 4, we define the quaternionic kernels:

Q1
⇤
K(4)

sin (x, y)
⌅

=
1
2

⇣
Ksin(x, y) �⇡yKsin(x, y)& x

y Ksin(z, y)dz Ksin(x, y)

⌘

Q1
⇤
K(4)

Airy(x, y)
⌅

=
1
2

⇣
KAiry(x, y) �⇡yKAiry(x, y)& x

y KAiry(z, y)dz KAiry(x, y)

⌘

�1
4

⇣
Ai(x)

& •
y Ai(z)dz Ai(x)Ai(y)� & x

y Ai(z)dz
⇥� & •

y Ai(z◆)dz◆
⇥

Ai(y)
& •

x Ai(z)dz

⌘
.(63)

And ⌅ = 1, we define the quaternionic kernels:

Q1
⇤
K(1)

sin (x, y)
⌅

=

⇣
Ksin(x, y) �⇡yKsin(x, y)

1
2 sgn(y� x) +

& x
y Ksin(z, y)dz Ksin(x, y)

⌘

Q1
⇤
K(1)

Airy(x, y)
⌅

=

⇣
KAiry(x, y) �⇡yKAiry(x, y)& x

y KAiry(z, y)dz KAiry(x, y)

⌘

+
1
2

⇣
Ai(x)

�
1�
& y

• Ai(z)dz
⇥

�Ai(x)Ai(y)� & x
y Ai(z)dz

⇥�
1�
& •

y Ai(z◆)dz◆
⇥

Ai(y)
�
1�
& •

x Ai(z◆)dz◆
⇥
⌘

.

Eventually, we define the effective degrees of freedom n⌅, sometimes called
Fermi number:

n1 = n2 = n, n4 = 2n .

8.13 proposition (Bulk). If x0 ]� 2, 2[, we have:

lim
n⇣•

K(⌅)
n

�
n1/2
⌅ x0 +

X
✓
(⌅)
1|n (n

1/2
⌅ x0)

, n1/2
⌅ x0 +

Y
✓
(⌅)
1|n (n

1/2
⌅ x0)

 

✓
(⌅)
1|n(n

1/2
⌅ x0)

= K(⌅)
sin (X, Y)

with uniform convergence for (X, Y) in any compact of R2. Hence, for any fixed
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k ↵ 1, the k-point density correlations in the bulk are:

lim
n⇣•

✓
(⌅)
k|n

�
n1/2
⌅ x0 +

X1

✓
(⌅)
1|n (n

1/2
⌅ x0)

, . . . , n1/2
⌅ x0 +

Xk

✓
(⌅)
1|n (n

1/2
⌅ x0)

 

�
✓
(⌅)
1|n(n

1/2
⌅ x0)

⇥k = detH
1⌦i,j⌦k

K(⌅)
sin (Xi, Xj) .

For any compact A  R, the gap probabilities are:

lim
n⇣•

P
(⌅)
n

�
Sp M ⇢

⌦
n1/2
⌅ x0 +

A

✓
(⌅)
1|n(n

1/2
⌅ x0)

↵
= ∆

.
= DetH(1� K(⌅)

sin )L2(A) .

The rescaling by the local spectral density at ✓(⌅)1|n(n
1/2
⌅ x0), means that mea-

sured in the variable X, the local density of eigenvalues is � 1. Such a nor-
malisation is necessary before comparing eigenvalue statistics in two different
ensembles.

8.14 proposition (Edge). We have:

lim
n⇣•

K(⌅)
n
�
2n1/2

⌅ + n�1/6
⌅ X, 2n1/2

⌅ + n�1/6
⌅ Y

⇥

n1/6
⌅

= K(⌅)
Airy(X, Y)

with uniform convergence for (X, Y) bounded from below, i.e. in any semi-infinite
segment of the form [m,+•[. So, the k-point density correlations are:

lim
n⇣•

✓
(⌅)
k|n

�
2n1/2

⌅ + n�1/6
⌅ X1, . . . , 2n1/2

⌅ + n�1/6
⌅ Xk

 

nk/6
⌅

= detH
1⌦i,j⌦k

K(⌅)
Airy(Xi, Xj) .

And, for any A bounded from below:

lim
n⇣•

P
(⌅)
n
⇤
Sp M ⇢ (2n1/2

⌅ + n�1/6
⌅ A) = ∆

⌅
= DetH(1� K(⌅)

Airy)L2(A) .

In particular, by choosing A = [s,+•[, we have access to the law of fluc-
tuations of the maximum eigenvalue:

TW⌅(s) := lim
n⇣•

P
(⌅)
n
⇤
�max ⌦ 2n1/2

⌅ + n�1/6
⌅ s

⌅
= Det(1� K(⌅)

Airy)L2([s,+•[) .

These are the Tracy-Widom laws introduced in § 1.8.

We give the details of the proof only for ⌅ = 2. For ⌅ = 1, 4, we have
already gathered all the ingredients so ⌅ = 2 and some extra but straightfor-
wards computations with the Plancherel-Rotach formula give the results.

135

Gaetan Borot
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Proof. Bulk: let x0 ]� 2, 2[. We have

K(2)
n
�
n1/2x0 + n�1/2X̃, n1/2x0 + n�1/2Ỹ

⇥

=
4n�1/2

2⇣
4

4� x2
0

1
cos
⇤
⌘n(x0, X̃, 0)

⌅
cos
⇤
⌘n(x0, Ỹ,�1)

⌅
� cos

⇤
⌘n(x0, X̃,�1)

⌅
cos
⇤
⌘n(x0, Ỹ, 0)

⌅2

+O(1/n)

and using the expression of the phase ⌘n given in Proposition 8.11 and trigono-
metric formulas:

K(2)
n
�
n1/2x0 + n�1/2X̃, n1/2x0 + n�1/2Ỹ

⇥

=
4n�1/2

2⇣
4

4� x2
0

2 sin
⇤
arccos(x0/2)

⌅
· sin

⇤
(X̃� Ỹ)

4
4� x2

0/2
⌅
+ O(1/n).

Therefore, if we rescale:

n�1/2X̃ =
X

✓
(2)
1|n(n

1/2x0)
= n�1/2 2⇣X4

4� x2
0

+ O(1/n)

and similarly for Y, we obtain the result in the announced form.

Proof. (Edge) Since the leading asymptotics of �n+s at the edge does not de-
pend on s, the leading contribution to the kernel K(2)

n at the edge comes from
the subleading terms in �n+s. But we can rearrange slightly the kernel to
avoid computing further coefficients in the asymptotics. We use the the exact
equation:

�◆n(x) = � x
2
�n(x) +

 
n�n�1(x)

to write:

K(2)
n (x, y) = � �n(x)�n(y)

2
+
�n(x)�◆n�1(y)� �◆n(x)�n�1(y)

x� y
.

When x and y are chosen in the edge regime (x � y) is of order n�1/6, so
the first term is negligible compared to the last one, and we find taking into
account ⇡x = n1/6⇡X :

K(2)
n
�
2
 

n + n�1/6X, 2
 

n + n�1/6Y
⇥

= n1/6 Ai(X)Ai◆(Y)�Ai◆(x)Ai(Y)
X�Y

+O(n�1/6) .
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9 Orthogonal polynomials and integrable systems

Lecture 17 (1h30)
December 9th, 2014Let µ0 be a reference positive measure on the real line. We want to consider

the system of orthogonal polynomials (pn)n↵0 associated to the new measure:

µt = µ0 · e�V(x), V(x) = Â
j↵1

tj xj

j
.

The polynomial V is called the potential, and the coefficients tj the times. We
assume that µ0 and V is chosen such that all the moments of µ are finite, thus
ensuring existence of (pn)n↵0. We consider the scalar product on R[X];

( f |g) =
(

R

f (x)g(x)dµt(x) .

Let us recollect some notations:
�

hn = (pn|pn)
⌅n = (xpn|pn)

,
�

un = ln hn
vn = ⌅n/hn

.

The partition function of the ⌅ = 2 invariant ensemble associated to µ can be
computed in terms of the norms:

Zn :=
(

Rn

n

’
i=1

dµt(�i) ’
1⌦i<j⌦n

(�j � �i)
2 = n!

n�1

’
m=0

hm .

So, un is a discrete derivative of the free energy Fn = ln(Zn/n!), namely
un = Fn � Fn�1.

9.1 Operator formalism

It is a basic fact that orthogonal polynomials satisfy:

9.1 lemma. The 3-term recurrence relation:

⌫n ↵ 0, xpn(x) = pn+1(x) + vn pn(x) + eun�un�1 pn�1(x) .

where it is understood that quantities with negative index are 0.

Proof. xpn(x)� pn+1(x) is a polynomial of degree ⌦ n, and we can decompose
it in the basis of pk indexed by k  J0, nK. We have (xpn|pn) = ⌅n = vn(pn|pn),
and:

(xpn|pn�1) = (pn|xpn�1) = (pn|pn + . . .) = hn = eun�un�1(pn�1|pn�1) .

The . . . is a polynomial of degree ⌦ n� 1: it is orthogonal to pn whence the
last equality. And, for m ⌦ n� 2, we have (xpn|pm) = (pn|xpm) which is equal
to 0 since xpm has degree m + 1 ⌦ n� 1.

137
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Position operator

The recurrence relation can be reformulated in terms of the operator Q̂ :
R[X] ⇣ R[X] of ”multiplication by X”: its matrix in the basis (pn)n↵0 is a
(semi-infinite) band matrix of width 1:

Q̂ =

�

#######!

v0 h0

h0 v1
h1
h0

h1
h0

v2
h2
h1

h2
h1

v3
h3
h2

. . . . . . . . .

⌫

$$$$$$$"

and we have:
xpn(x) = Â

m↵0
Q̂nm pm(x) .

We thus have:

Q̂nn+1 = 1, Q̂nn = vn, Q̂nn�1 = eun�un�1 .

Differentiation with respect to times

We would like to compute j⇡tj pn via its decomposition on the basis of or-
thogonal polynomials. Since pn = xn + . . ., the polynomial j⇡tj pn has degree
⌦ n� 1, i.e. the matrix representing j⇡tj is strictly lower triangular. Differenti-
ating the scalar product:

j⇡tj hn ⌃n,m = (j⇡tj pn|pm) + (pn|j⇡tj pm)� (Q̂j pn|pm) .

For n = m, the two first terms vanish par orthogonality, and we find:

j⇡tj hn = Q̂j
nn .

For m < n, the second term vanishes by orthogonality, and we find:

(j⇡tj pn|pm) = (Q̂j pn|pm) .

Therefore:
j⇡tj pn(x) = Â

m↵0
(Q̂j)�nm pm(x),

where (· · · )� denotes the strict lower triangular part of the matrix · · · .
The matrices Q̂k themselves depend on the times. We shall now examine

their evolution. Let us differentiate, for any n ↵ 0:

j⇡tj

�
Q̂k pn(x)

⇥
= Â

⇥↵0
(j⇡tj Q̂

k)n⇥p⇥(x) + Â
m↵0

Q̂k
nm j⇡tj pm(x)

= Â
m↵0

(j⇡tj Q̂
k
nm) pm(x) + Â

m,⇥↵0
Q̂k

nm (Qj)�m⇥ p⇥(x) .(64)
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But this is also equal to:

j⇡tj

�
xk pn(x)

⇥
= xk j⇡tj pn(x) = xk Â

m↵0
(Q̂j)�nm pm(x)

= Â
m,⇥↵0

(Q̂j)�nmQ̂k
m⇥ p⇥(x) .(65)

Comparing the two expressions, we find:

(66) ⌫j, k ↵ 1, j⇡tj Q̂
k =

⇤
(Q̂j)�, Q̂k⌅ .

9.2 Impulsion operator

We can also define the operator P̂ : R[X] ⇣ R[X] of multiplication by X. It
satisfies the commutation relation:

[P̂, Q̂] = 1.

We denote (P̂nm)m,n↵0 its matrix in the basis of (pn)n↵0:

⇡x pn(x) =
n�1

Â
m=0

P̂nm pm(x).

This matrix is strictly lower triangular, and identifying the leading coefficient:
P̂nn�1 = n.

In the special case where µ0 is the Lebesgue measure, i.e. µ = e�V(x)dx,
we can compute P̂ by using integration by parts in the scalar product:

(67) (P̂pn|pm) + (pn|P̂pm) = (V◆(Q̂)pn|pn),

where we identify V◆(Q̂) as the operator of multiplication by the polynomial
V◆(X). Using that P̂ is strict lower triangular, we get for m < n the equation
P̂nm = V◆(Q̂)nm. In other words:

P̂ = [V◆(Q̂)]�.

The previous formula for m = n� 1, and (67) for n = m give two constraints
on the operator Q̂, called discrete string equation:

V◆(Q̂)nn = 0, V◆(Q̂)nn�1 = n.

Folding

The 3-term recurrence relation can be written as a recurrence on the column
vector:

Yn+1(x) = An(x)Yn(x),
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with:

Yn(x) =
⌦

pn(x)
pn�1(x)

↵
, An(x) =

⇣
x� vn � hn

hn�1
1 0

⌘
.

Then, the differential equations with respect to x and tj can be written in terms
of Yn(x) only.

9.2 lemma. There exist 2⇥ 2 matrices Bn and C(j)
n , whose entries are polynomials

in x and depend on the t’s, such that, for any n ↵ 1:

⇡xYn(x) = Bn(x), ⌫j ↵ 1, j⇡tj Yn(x) = C(j)
n (x).

It is implicit that all the matrices here depend on the times. In the case
µ(x) = e�V(x)dx, There exist explicit formulas involving V◆(Q̂) for Bn and Qj

for C(j)
n , which we will not state here.

Proof. Since Y1(x) = (x 1)T , we can take:

B1(x) =
⌦

0 1
0 0

↵
, C(j)

1 = 0.

Assume we have constructed Bn and C(j)
n . Note that the matrix An(x) is in-

vertible, and its inverse:

A�1
n (x) =

⇣
0 1

� hn�1
hn

hn�1
hn

(x� vn)

⌘

is a polynomial in x. Then, we have:

⇡xYn+1(x) = ⇡x
�

An(x)Yn(x)
⇥
= (⇡x An(x)) · Yn(x) + An(x)⇡xYn(x)

= ⇡x An(x)A�1
n (x) + An(x)Bn(x)A�1

n (x),(68)

so we can take:

(69) Bn+1(x) = ⇡x An(x) · A�1
n (x) + An(x)Bn(x)A�1

n (x).

Similarly, we can set:

(70) C(j)
n+1 = j⇡tj An(x) · A�1

n (x) + An(x)C(j)
n A�1

n (x).

By induction, B’s and C(j) exist and have polynomial entries in x.
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9.3 Introduction to integrable system: the Toda chain

The vector of consecutive orthogonal polynomials Yn(x) exists, and is solution
to many ODE’s:

�
⇡x � An(x)

⇥
Yn(x) = 0,

�
j⇡tj � C(j)

n (x)
⇥
Yn(x) = 0 .

So, the coefficients of those ODEs – which are polynomials in x and func-
tions of all the t’s – cannot be arbitrary. They must satisfy the zero-curvature
conditions20:

(71) ⌫j, k, n ↵ 1, [⇡x � An(x), j⇡tj � C(j)
n ] = 0 [j⇡tj � C(j)

n , k⇡tk � C(k)
n ] = 0 .

These are nonlinear PDE’s with respect to the tj’s. They are called integrable
because they arise as compatibility conditions of linear ODEs. The set of linear
ODE’s is called associated linear system. Only very special nonlinear PDEs
are integrable, and proving that a given collection of nonlinear PDE’s is inte-
grable has often been done by guessing a rewriting as compatibility equations.

Part of Equation 71 are actually a reformulation – after folding to dimen-
sion 2 – of the evolution equations:

(72) ⌫j ↵ 1, j⇡tj Q̂ =
⇤
(Q̂j)�, Q̂

⌅
.

These are called the Toda hierarchy, and ⇡tj generates the j-th Toda flow.
Equations 72 expresses the compatibility of the semi-infinite system:

xpn(x) =
n

Â
m↵0

Q̂nm pm(x), j⇡tj pn(x) = Â
m↵0

(Q̂j)mn pm(x) ,

so the Toda hierarchy is integrable according to our definition.
A system of equations of the form:

⇡tj A = [L, A]

for an unknown matrix or operator A is called a Lax system. If implies that
the eigenvalues of A are conserved quantities under the evolution of all tj’s.
Equivalently, the spectral invariants (Tr Ak)k↵1 are conserved quantities:

9.3 lemma. The Toda hierarchy has the property to be hamiltonian, i.e. the j-th
equation can be written in Hamilton-Jacobi form:

(73) ⌫j ↵ 1, ⇡tj un =
⇡Hj

⇡vn
, ⇡tj vn = �

⇡Hj

⇡un
,

with hamiltonians Hj = �Tr Q̂j+1

j(j+1) .

The proof is left as exercise. Formally, the Hj are conserved quantities. We

20Equations (69)-(70) actually expresses the compatibility of the difference equation – with
respect to the discrete variable n – of the ⇡x and ⇡tj systems.
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shall describe below this structure for j = 1 and 2 only.
There exist actually several notions of ”integrable systems”, not necessarily

equivalent. It turns out that for almost all known integrable PDE’s, a represen-
tation in Lax form has been found, thus giving a systematic way to produce
a countable set of independent conserved quantities. Integrable hamiltonian
PDE’s form a (large) subclass of integrable PDE’s, to which the Toda hierarchy
belongs.

First Toda equation

Let us compute the differential equation with respect to t1 satisfied by the
coefficients of Q̂. Since Q̂ is a band matrix of width 1 and Q̂� is strict lower
triangular, and Q̂nn+1 = 1 anyway, we have two non trivial equations:

(74)
�

⇡t1 Q̂nn = Q̂nn�1Q̂n�1n � Q̂nn+1Q̂n+1n
⇡t1 Q̂nn�1 = Q̂nn�1Q̂n�1n�1 � Q̂nnQ̂nn�1

.

In terms of u’s and v’s they become:
�

⇡t1 vn = eun�un�1 � eun+1�un

⇡t1(un � un�1) = vn�1 � vn
.

By summing the second equation over n and using the fact that (74) is also
valid for n = 0 with the convention u�j = v�j = 0 for j > 0, we obtain:

�
⇡t1 vn = eun�un�1 � eun+1�un

⇡t1 un = �vn
.

These are nonlinear difference-differential equations, which take the Hamilton-
Jacobi form (73), with Hamiltonian:

H1 = � Â
n↵0

1v2
n

2
+ eun�un�1

2
.

We indeed remark that:
H1 = �1

2
Tr Q̂2

Although the sum in H1 is semi-infinite and there is an issue of convergence,
its derivative with respect to its variables un and vn are finite sums, so the
Hamilton-Jacobi equations are unambiguously defined.

Second Toda equation

To write down the evolution equation (72) with respect to t2, we need to
compute (Q2)�. Its non-zero terms are:

(Q̂2)nn�1 = Q̂nnQ̂nn�1 + Q̂nn�1Q̂n�1n�1 = eun�un�1(vn + vn�1)

(Q̂2)nn�2 = Q̂nn�1Q̂n�1n�2 = eun�un�2 .
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Then:
�

2⇡t2 vn = eun�un�1(vn + vn�1)� eun+1�un(vn+1 + vn)
2⇡t2(un � un�1) = v2

n�1 � v2
n + (eun�1�un�2 � eun�un�1)� (eun+1�un � eun�un�1)

.

Once again, summing the second equation over n, we obtain:
�

2⇡t2 vn = �vn+1eun+1�un + vn(eun�un�1 � eun+1�un) + vn�1eun�un�1

2⇡t2 un = �v2
n � eun�un�1 � eun+1�un .

This can again be put in Hamilton-Jacobi form (73), with Hamiltonian:

H2 = �1
2 Â

n↵0

1v3
n

3
+ vn(eun�un�1 + eun+1�un)

2
.

We remark that:
H2 = �1

6
Tr Q̂3

again in agreement with Lemma 9.3.

Reduction: Volterra equation

If the measure µ is even, we have vn = 0. Then, the second Toda equation (72)
reduces to an equation on Rn := Q̂nn�1 = hn/hn�1:

2⇡t2 Rn = Rn(Rn�1 � Rn+1),

which is called the Volterra equation. Studying the continuum limit of this
difference equation, one can find in a suitable regime the Korteweg-de Vries
equation:

⇡ f = ⇡�3 f + 6 f ⇡� f .

The latter is one of the first nonlinear PDEs which have been shown to be
integrable in the late 60s, first by finding a countable number of conserved
quantities, and later by representing it as the compatibility of a Lax system.
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10 Beta ensembles and potential theory

The ⌅ ensembles are defined by the probability measure on RN :

(75) dµN(�1, . . . ,�N) =
1

ZN
’

1⌦i<j⌦N
|�i � �j|⌅

N

’
i=1

e�N(⌅/2)V(�i)d�i .

V : R ⇣ R is a continuous function called potential, or sometimes external
field. We assume it is confining:

(76) lim inf
|x|⇣•

V(x)
2 ln |x| > 1 .

This assumption guarantees that V grows fast enough at infinity for the inte-
gral to be absolutely convergent, and but also – as we will see – that most of
the interesting behavior when N ⇣ • arise from configurations of �i’s in a
region bounded uniformly in N. We wish to obtain the large N behavior of
the partition function:

ZN =
(

RN

’
1⌦i<j⌦N

|�i � �j|⌅
N

’
i=1

e�N(⌅/2)V(�i)d�i =
(

RN

e�N2(⌅/2)ED(L(�)
N )

N

’
i=1

d�i

and study the convergence when of the random probability measure L(�)
N . This

will be achieved in § 10.4.
The configuration of �i’s which minimize the quantity:

ED(L(�)
N ) = Â

1⌦i<j⌦N
� ln |�i � �j|+

N

Â
i=1

V(�i)(77)

=
((

x �=y

� ln |x� y|dL(�)
N (x)dL(�)

N (y) +
(

V(x)dL(�)
N (x)

=
((

x �=y

�
� ln |x� y|+ V(x) + V(y)

2

 
dL(�)

N (x)dL(�)
N (y)

should give the dominant contribution, when N ⇣ •, to ZN . For a fixed
N, the configurations (�(N)

1 , . . . ,�(N)
N ) minimizing (77) are called the Fekete

points. They play an important role in approximation theory, because they
are in some sense ”optimal” interpolation points. We will not study Fekete
points here, but since we are interesting in the limit N ⇣ •, we will study
the auxiliary problem of minimizing the energy functional:

E(µ) :=
((

E(x, y)dµ(x)dµ(y), E(x, y) := � ln |x� y|+ 1
2
�
V(x) + V(y)

⇥

over all probability measures µ  M1(R). This is the continuous version of
the minimizing problem for Fekete points. Most of the information about the
large N limit of the model can be extracted from the energy functional.
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10.1 The energy functional

Since the logarithm singularity is integrable, E(µ) is finite at least when µ
has compact support and is Lebesgue continuous. But we have to justify that
it is well-defined for any probability measure µ. We also establish the basic
properties of this functional:

10.1 lemma. For any probability measure µ, E(µ) is well-defined in R ⇡ {+•}.
Besides, for any M  R, its level sets:

HM =
⇧

µ M1(R), E(µ) ⌦ M}

are compact. In particular, they are closed, i.e. E is lower semi-continuous.

Proof. Let us regularize the logarithmic singularity by defining:

E(⌥)(µ) :=
((

[�1/⌥,1/⌥]2

E(⌥)(x, y)dµ(x)dµ(y)

E(⌥)(x, y) := �1
2

ln((x� y)2 + ⌥2) +
1
2
(V(x) + V(y)).

E(⌥)(µ) is well-defined for any ⌥ > 0, and is a decreasing function of ⌥. There-
fore, the following limit exists and defines E(µ):

E(µ) := lim
⌥⇣0

E(⌥)(µ)  R ⇡ {+•} .

Since E(⌥) is continuous and bounded on [�1/⌥, 1/⌥]2, the functional E(⌥)
is continuous over M1(R) for the weak topology. Then, E is lower semi-
continuous as the supremum of continuous functionals. This means that, for
any sequence (µn)n converging to µ, we have the inequality:

lim inf
n⇣•

E(µn) ↵ E(µ) .

This is equivalent to the property that, for any M, the level set HM is closed.
We will now check that HM is tight: this imply compactness by Prokhorov the-
orem. Since we assumed that V is confining (Equation (76)), lim|x|⇣• V(x) =
+• and there exist c > 0 and c◆  R such that21:

⌫x, y  R, E(x, y) ↵ c
�
|V(x)|+ |V(y)|

⇥
+ c◆ .

The terms proportional to c are nonnegative, so we have a lower bound:

E(µ) ↵ cvm µ([�m, m]c) + c◆

with vm = infx[�m,m]c |V| going to +• when m ⇣ +•. The left-hand side
has a uniform upper bound by M when µ  HM. Therefore, µ([�m, m]c)
converges to 0 uniformly for µ  HM when m ⇣ •, i.e. HM is tight, and we
conclude the proof.

21The left-hand side is +• when x = y, but this does not spoil the lower bound.
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10. Beta ensembles and potential theory

We now address the problem of minimizing the energy functional.

10.2 lemma. E is strictly convex.

Proof. Let µ0, µ1 M1(R). For any t  [0, 1], µt = (1� t)µ0 + tµ1 is a proba-
bility measure, and we decompose:

(78) µt ⇧ µt = (1� t)µ⇧2
0 + tµ⇧2

1 � t(1� t)(µ0 � µ1)
⇧2 .

We want to prove the convexity inequality:

E(µt) ⌦ (1� t)E(µ0) + tE(µ1) ,

with equality iff µ1 = µ0. We can assume E(µ0) and E(µ1) finite, since the
bound is trivial otherwise. It makes sense to integrate (78) against E(x, y) term
by term, since the two first terms have finite integrals, while the last integral
belongs a priori to R ⇡ {�•}. ✏ = µ0 � µ1 is a finite, signed measure of mass
zero. Therefore:

Q(✏) :=
((

R2

d✏(x)d✏(y)
�
� ln |x� y|+ V(x) + V(y)

2

 

= lim
⌥⇣0

(

R2

�1
2

ln((x� y)2 + ⌥2)d✏(x)d✏(y) .(79)

At this point, we use an integral representation of the logarithm:

�1
2

ln(u2 + ⌥2) = Re
� •(

0

eius � 1
s

e�⌥sds
 
� ln ⌥

to find:

Q(✏) = lim
⌥⇣0

Re
⌦ ((

R2

d✏(x)d✏(y)
•(

0

ei(x�y)s

s
e�⌥sds

↵

= lim
⌥⇣0

•(

0

|+✏(s)|2
s

e�⌥s ds =
•(

0

|+✏(s)|2
s

ds .(80)

We have used Fubini theorem to go from the first line to the second line, since
the integral for any fixed ⌥ > 0 is absolutely convergent. In the second line, we
have recognized the Fourier transform +✏(s) of the measure ✏. The last integral
obviously belongs to [0,+•], with equality iff +✏(s) = 0 almost everywhere,
i.e. ✏ � 0. So, we have:

E(µt) = (1� t)E(µ0) + tE(µ1)� t(1� t)Q(µ0 � µ1) ↵ (1� t)E(µ0) + tE(µ0) ,

with equality iff µ0 = µ1.

10.3 corollary. E has a unique minimizer over M1(R), denoted µeq. It is called
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10.2. The equilibrium measure

the equilibrium measure.

Proof. Since E(µ) is finite for the Lebesgue measure supported on a compact,
the level set HM is non empty for some M large enough. Since the level set
HM is compact (Lemma 10.1), E achieves its minimum. The strict convexity of
E (Lemma 10.2) guarantees that there is a unique minimizer.

10.2 The equilibrium measure

We define the effective potential:

Veff(x) := V(x)� 2
(

ln |x� y|dµeq(y) .

10.4 theorem. µeq is characterized by the following properties: there exists a finite
constant Ceff such that:

(i) Veff(x) = Ceff for x µeq-almost everywhere.

(ii) Veff(x) ↵ Ceff for x (Lebesgue)-almost everywhere.

The minimization of E over M1(R) can be seen as a minimization over
the vector space of finite measures under the constraints that the total mass is
1, and the measure is positive. This respectively explains the presence of the
Lagrange multiplier Ceff, and the inequality (ii).

We will see later in Corollary 10.14 that the empirical measure L(�)
N con-

verges to the equilibrium measure. It is therefore important to describe the
properties of µeq, and hopefully compute it. Heuristically, the effective poten-
tial Veff(�i) can be interpreted as the potential felt by one eigenvalue in (75): it
takes into account the term NV(�i), as well as the collective effect of repulsion
by all the other eigenvalues, which is approximated by

(
2N ln |x� y|dL(�)

N �
(

2 ln |x� y|dµeq(y)

when N is large. Theorem 10.4 characterizes the equilibrium measure, as the
one producing a constant – and minimum – effective potential on the support
of µeq, i.e. the locus where the eigenvalues are typically expected to be.

10.5 remark. Theorem 10.4 tells us that Veff has a minimum value Ceff on
supp µeq, but nothing prevents it to reach its minimum value Ceff outside
supp µeq as well.

Proof. Let f , g be two measurable functions with compact support, such that
inf f (x)dµeq(x) = �

&
g(x)dx and g ↵ 0. For t ↵ 0 small enough

µt = µeq + t( f µeq + gdx)

is a probability measure. So, we have E(µeq + t✏) ↵ E(µeq) by the minimiza-
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10. Beta ensembles and potential theory

tion property. This is a quadratic polynomial in t:

E(µeq + t✏) = E(µeq) + t
(

Veff(x)d✏(x) + t2Q(✏)

so the coefficient of t must be nonnegative. This reads:
(

Veff(x)
⇤

f (x)dµeq + g(x)dx
⌅
↵ 0 .

Firstly, we choose g = 0, and apply this inequality for f and � f . We thus
obtain the equality: (

Veff(x) f (x)dµeq(x) = 0

for any measurable f with compact support and such that
&

f (x)dµeq(x) = 0.
This implies for any measurable f with compact support:

(
(Veff(x)� Ceff) f (x)dµeq(x) = 0, Ceff =

(
Veff(x)dµeq(x) ,

hence the equality Veff(x) = Ceff for x µeq-almost everywhere. Secondly, we
choose an arbitrary measurable, positive, compactly supported function g, and
take f to be the function equal to the constant �

&
g(x)dx on the support of

µeq, and 0 otherwise. This gives:
(

Veff(x)
�

g(x)dx� dµeq(x)
(

dy g(y)
 
=
(
(Veff(x)� Ceff)g(x)dx ↵ 0 .

Therefore, Veff(x)� Ceff ↵ 0 for x Lebesgue almost everywhere. Conversely,
let µ be a probability measure satisfying (i) and (ii). We can integrate the
inequality V(x) � 2

&
ln |x � y|dµ(y) ↵ C against the measure (µeq � µ) to

find back:
E [µ + t(µeq � µ)] ↵ E [µ] + t2Q[µ� µeq] ↵ E(µ) .

But convexity also gives an upper bound for the left-hand side:

(1� t)E(µ) + tE(µeq) ↵ E(µ) .

Hence E(µeq) ↵ E(µ), thus µ is a minimizer. By uniqueness of the minimizer,
µ = µeq.

10.6 lemma. µeq has compact support.

Proof. We can write:

Veff(x) =
( �

V(x)� 2 ln |x� y|
⇥
dµeq(y) .

Since V is confining (Equation (76)), we know that for any y, V(x)� 2 ln |x� y|
goes to +• when |x| ⇣ •. But Veff must be constant on the support of µeq.
Therefore, this support must be compact.
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10.2. The equilibrium measure

If the support of µeq is known a priori, the characterization of Theorem 10.4
gives µeq as a solution of linear equation. In practice, one often makes an
assumption on the shape of the support (e.g. a union of segments), solves
the linear equation, then find consistency equations that the support should
satisfy. This usually leads to a finite number of possibilities. Among those,
if one finds a solution which is a positive measure of mass 1, by uniqueness
it must be the equilibrium measure, and this validates the assumption made
initially on the support.

In general, it is difficult to compute completely µeq, and one can only rely
on the characterization to establish qualitative properties of µeq. But in the
situation where we know a priori that µeq is supported on a segment (the one-
cut regime), the problem is amenable to a fairly explicit solution, presented
in Theorem 10.8 or ?? below. We first give a sufficient – but not necessary –
condition to be in the one-cut regime:

10.7 lemma. If V is C1 and convex, then µeq is supported on a segment.

Proof. Let Seq be the support of µeq. For any y, x �⇣ V(x) � 2 ln |x � y| is a
convex function, which is strictly convex on the domain x �= y. Therefore,
integrating against dµeq(y), we deduce that x �⇣ Veff(x) is convex, and strictly
convex in Sc

eq. Then, the set S of values where it achieves its minimum is
connected. Assume there is a segment ]x�, x+[ S that does not belong to Seq
but x±  Seq, with x� < x+. Then, differentiating the equality (i) and sending
x  Seq to x� or x+, we obtain:

(81)

�
 

�
V◆(x�)� 2⇡x=x�

� &
ln |x� y|dµeq(y)

 
= 0

V◆(x+)� 2⇡x=x+

� &
ln |x� y|dµeq(y)

 
= 0

.

By convexity, V◆(x�) ↵ V◆(x+), and by strict convexity of
&

ln |x� y|dµeq(y)
on x ]x0, x1[, we also have:

⇡x=x�

� (
ln |x� y|dµeq(y)

 
< ⇡x=x+

� (
ln |x� y|dµeq(y)

 
,

which is a contradiction with the equality of the two lines in (81). Therefore,
we must have S = Seq, which is a segment.

10.8 theorem (Tricomi formula). Assume V C2. If the support of µeq is a segment
[b, a] with b < a, µeq is continuous with respect to Lebesgue, and its density reads:

dµeq

dx
(x) =

a(

b

V◆(x)�V◆(�)
x� �

6
(a� x)(x� b)
(a� �)(� � b)

d�
2⇣

.

The endpoints a and b must satisfy the constraints:

(82)
a(

b

V◆(�)d�3
(a� �)(b� �)

= 0,
(a + b)

2

a(

b

� V◆(�)d�3
(a� �)(� � b)

= 1 .
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In the course of the proof, we accept that the Stieltjes transform of µeq is
continuous when z ⇣ a or b in C \ [b, a], and has continuous boundary values
when z ⇣ 0 with ±Im z > 0. This fact will be justified in Chapter 11 using
Schwinger-Dyson equations, see Corollary 11.2.

Proof. We prove the result for V polynomial, and it can be justified in general
by approximations. We can differentiate the equality (i) for x ]b, a[:

2p.v
( dµeq(y)

x� y
= V◆(x),

where p.v. denotes Cauchy principal value. Let us introduce the Stieltjes trans-
form:

W(z) =
( dµeq(y)

z� y
.

This is a holomorphic function of z  C \ [b, a], which behaves like W(z) � 1/z
when z ⇣ •. By definition of the principal value integral:

⌫x ]b, a[, lim
⌥⇣0

W(x + i⌥) + W(x� i⌥) = V◆(x).

We accepted that W(z) has continuous boundary values on [b, a], and is con-
tinuous when z ⇣ a, b in C \ [b, a], so this equation actually holds for x  [b, a].
V◆(x)/2 is a particular solution to this equation, so we can set:

W(0)(z) = W(z)� V◆(z)
2

,

which now satisfies:

⌫x  [b, a], W(0)(x + i⌥) + W(0)(x� i⌥) = 0 ,

i.e. W(0)(z) takes a minus sign when z crosses the cut [b, a]. The function:

◆(z) =
4
(z� a)(z� b)

has the same behavior. ◆ is defined as the unique holomorphic function on
C \ [b, a] which behaves like ◆(z) � z when z ⇣ •. So, the function:

W(1)(z) =
W(0)(z)
◆(z)

is now continuous when z crosses the cut ]b, a[. A priori, it behaves like O((z�
a)�1/2) when z ⇣ a, but this continuity implies that the coefficient in front
of (z � a)�1/2 vanishes, and it must actually be a O(1), and similarly when
z ⇣ b. Therefore, W(1) is an entire function. Since V is a polynomial, W(1)
has polynomial growth, so we can conclude by Liouville theorem that it is a
polynomial. It just remains to compute the polynomial that makes our initial
W(z) be 1/z + o(1/z) when z ⇣ •. This can be done elegantly with contour
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integrals. We write:

W(1)(z) = Res
⇠⇣z

W(1)(⇠)d⇠
⇠ � z

= � Res
⇠⇣•

W(1)(⇠)d⇠
⇠ � z

= Res
⇠⇣•

⇤
V◆(⇠)/2 + O(1/⇠)

⌅
d⇠

◆(⇠)(⇠ � z)
.(83)

The O(1/⇠) does not contribute to the residue at • because it comes with
a prefactor which is already O(1/⇠). Then, moving back the contour to sur-
round the cut of ◆ on [b, a], we also pick up the residue at the simple pole
⇠ = z:

W(1)(z) = �
V◆(z)
2◆(z)

+
%

[b,a]

d⇠
4i⇣

V◆(⇠)d⇠
◆(⇠)(z� ⇠)

,

and coming back to the Stieltjes transform itself:

(84) W(z) =
%

[b,a]

d⇠
4i⇣

◆(z)
◆(⇠)

V◆(⇠)
z� ⇠

.

Since ◆(z) = z� (a + b)/2 + O(1/z), we identify:

W(z) = c0 + c1/z + O(1/z2) ,

when z ⇣ • with:

c0 =
%

[b,a]

d⇠
4i⇣

V◆(⇠)
◆(⇠)

, c1 = � a + b
2

%

[a,b]

d⇠
4i⇣

⇠ V◆(⇠)
◆(⇠)

,

and we have to satisfy the constraints c0 = 0 and c1 = 1. Squeezing the
contour integral to the segment [b, a], and using that the signs of the integrand
are opposite on the upper and lower side of [b, a], we obtain the constraints
(82). The density of µeq is obtained from the discontinuity of W(z) when z
crosses [b, a]. Since in (84) the point z is outside the contour, we can move it
back inside the contour by writing:

W(z) =
V◆(z)

2
+ ◆(z)R(z) ,

with:

R(z) =
%

[b,a]

d⇠
4i⇣

V◆(⇠)�V◆(z)
◆(⇠)(⇠ � z)

=
1

2⇣

a(

b

d⇠3
(a� ⇠)(⇠ � b)

V◆(⇠)�V◆(z)
⇠ � z

.

Then, it is easy to compute the discontinuity, since it only comes from the
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prefactor ◆(z), whose discontinuity at x is equal to 2◆(x):

dµeq

dx
(x) =

1
2i⇣

lim
⌥⇣0+

⇤
W(x� i⌥)�W(x + i⌥)

⌅

=
2◆(x)R(x)

2i⇣
=

3
(a� x)(x� b)

⇣
R(x) .(85)

We observe that, if V is convex on [b, a], then R(x) ↵ 0, ensuring that µeq
is positive measure. When V◆ is not convex, if the constraints (82) have sev-
eral solutions (a, b), there must be unique one for which formula (85) gives a
positive measure.

10.3 Large deviation theory: principles
Lecture 18 (1h30)
January 12th, 2015 X denotes a Polish space, for instance R or M1(R). We describe the basics of

large deviation theory. A sequence (µn)n of probability measures on X satisfies
a large deviation principle (LDP) if:

• there exists a sequence of positive real numbers (⇤n)n such that

lim
n⇣•

⇤n = +•.

• there exists a lower semi-continuous function J : X ⇣ [0,+•]

• for any open set W  X:

lim inf
n⇣•

⇤�1
n ln µn[W] ↵ � inf

xW
I(x) .

• for any closed set F  X:

lim sup
n⇣•

⇤�1
n ln µn[F] ⌦ � inf

xF
I(x) .

⇤n is called the speed, and I the rate of the LDP. In particular, by taking F = X
in the last inequality, one obtains that infxX I = 0. I is a good rate function if
for any M, the level set IM = I�1([0, M]) is compact. By the previous remark,
if I is a good rate function, there must exist x  X such that I(x) = 0.

(µn)n satisfies a weak LDP if one requires only ”F compact” in the last
point. (µn)n is exponentially tight if there exists an increasing sequence of
compacts (KM)M↵0 such that:

lim
M⇣•

lim sup
n⇣•

⇤�1
n ln µn[Kc

M] = �• .

10.9 lemma. If (µn)n is exponentially tight, a weak LDP implies a LDP.

Proof. Let F is a closed set, and KM a compact such that

lim sup
n⇣•

⇤�1
n ln µn[Kc

M] = �M.
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Then:

lim sup
n⇣•

⇤�1
n ln µn[F] ⌦ lim sup

n⇣•
⇤�1

n ln
�
µn[F ⇢ KM] + µn[Kc

M]
⇥

⌦ max
1

lim sup
n⇣•

⇤�1
n ln

�
2µn[F ⇢ KM]

⇥
, lim sup

n⇣•
⇤�1

n ln
�
2µn[Kc

M]
⇥2

.

We then use the LDP estimate on the compact F ⇢ KM, and the definition of
KM:

lim sup
n⇣•

⇤�1
n ln µn[F] ⌦ max

-
� inf

xF⇢KM
I(x),�M

.
⌦ max

-
� inf

xF
I(x),�M

.
.

Taking the limit M ⇣ •, we find:

lim sup
n⇣•

⇤�1
n ln µn[F] ⌦ � inf

xF
I(x) .

10.10 lemma. Assume that, for any x  X:

�I(x) = lim
⌥⇣0

lim sup
n⇣•

⇤�1
n ln µn[B(x, ⌥)] = lim

⌥⇣0
lim inf

n⇣•
⇤�1

n ln µn[B(x, ⌥)] .

Then, (µn)n satisfies a weak LDP.

Proof. Let W be an open set. If W is empty the inequality trivially holds, so we
assume W non-empty. If x  W, the open ball B(x, ⌥) is contained in W for ⌥
small enough. Thus:

lim inf
n⇣•

⇤�1
n ln µn[W] ↵ lim

⌥⇣0
lim inf

n⇣•
⇤�1

n ln µn[B(x, ⌥)] = �I(x) .

Optimizing over x  W, we deduce:

lim inf
n⇣•

⇤�1
n ln µn[W] ↵ � inf

xW
I(x).

Let F be a compact set. Since X is a Polish space, for any integer m > 0,
there exists a finite covering F  'k(⌥)

i=1 B(x(⌥)i , ⌥) by balls with centers x(⌥)i  F.
Using an obvious union upper bound for the probability of F:

lim sup
n⇣•

⇤�1
n ln µn[F] ⌦ lim

⌥⇣0
lim sup

n⇣•
⇤�1

n ln
� k(⌥)

Â
i=1

µn[B(x(⌥)i , ⌥)]
 

⌦ lim
⌥⇣0

max
1⌦i⌦k(⌥)

lim sup
n⇣•

⇤�1
n ln

�
k(⌥) µn[B(x(⌥)i , ⌥)]

⇥

⌦ max
⌥◆>0

1⌦i⌦k(⌥◆)

1
lim
⌥⇣0

lim sup
n⇣•

⇤�1
n ln µn[B(x(⌥

◆)
i , ⌥)]

2
.(86)
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Using the assumption, we arrive to:

lim sup
n⇣•

⇤�1
n ln µn[F] ⌦ max

⌥◆>0
1⌦i⌦k(⌥◆)

⇧
� I(x(⌥

◆)
i )
⌃
⌦ � inf

xF
I(x) .

Therefore, to derive an LDP, it is enough to establish exponential tightness,
and an upper and a lower bound for probabilities of small balls in X. Indeed,
Lemma 10.9 upgrades the latter to large deviation estimates for probabilities
in compact sets (weak LDP), and with exponential tightness, Lemma 10.9 con-
cludes for any closed sets (LDP).

A fundamental result in the theory of large deviations is:

10.11 lemma (Varadhan). Assume that (✏n)n satisfies a LDP with good rate func-
tion I and speed ⇤n. Let J : X ⇣ R continuous bounded. Then:

lim
n⇣•

⇤�1
n ✏n

⇤
e⇤n J(x)⌅ = sup

xX

⇧
J(x)� I(x)

⌃
.

This lemma gives the free energy of a statistical mechanics system in pres-
ence of a continuous bounded source J. In physically interesting models, one
often face the problem of extending such results to sources J that do not satisfy
these assumptions, and it usually requires some non-trivial work to reduce it
to the use of Varadhan’s lemma. As usual, singularities make all the richness
of physics. We will see how it can be done in beta ensembles, where we typi-
cally want J to contain logarithmic singularities.

Proof. We prove the existence, and compute the limit by showing an upper
and a lower bound which coincide. We start with the lower bound estimate.
Fix ⌥ > 0. For any x  X, since J is lower semicontinuous, there exists an open
neighborhood Ux,⌥ of x such that

inf
yUx,⌥

J(y) ↵ J(x)� ⌥ .

We can write:

lim inf
n⇣•

⇤�1
n ln

- (

X

d✏n(y) e⇤n J(y)
.
↵ lim

⌥⇣0
lim inf

n⇣•
⇤�1

n ln
- (

Ux,⌥

d✏(y) e⇤n(J(x)�⌥)
.

↵ lim
⌥⇣0

⇧
J(x)� ⌥� infyUx,⌥ I(y)

⌃

↵ lim
⌥⇣0

⇧
J(x)� I(x)� ⌥

⌃
= J(x)� I(x) .

Optimizing over x  X, we find:

lim inf
n⇣•

⇤�1
n ln

- (

X

d✏n(y) e⇤n J(y)
.
↵ sup

xX

⇧
J(x)� I(x)

⌃
.

Now, we turn to the upper bound estimate. Using the lower semi-continuity
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10.4. Large deviations of the empirical measure

of I and the upper semi-continuity of J, we denote Vx,⌥ a closed neighborhood
of x  X such that:

(87) inf
yVx,⌥

I(y) ↵ I(x)� ⌥, sup
yVx,⌥

J(y) ⌦ J(x) + ⌥ .

Fix a real number M. By assumption the level set IM is compact. So, there ex-
ists a finite covering X =

'k(M)
i=1 Vxi ,⌥ ⇢ Ic

M. With the maximum bound already
used in the proof of the previous lemma:

lim sup
n⇣•

⇤�1
n ln

- (

X

d✏n(y) e⇤n J(y)
.

⌦ max
�

max
1⌦i⌦k(M)

lim sup
n⇣•

⇤�1
n ln

- (

Vxi ,⌥

d✏n(y) e⇤n J(y)
.
, lim sup

n⇣•
⇤�1

n ln
- (

Ic
M

d✏n(y) e⇤n J(y)
.�

.

For the integrals over Vxi ,⌥, we use the inequality (87) for J, the LDP for ✏n, and
then the inequality (87) for I. For the integral over Ic

M, we use the boundedness
of J, the LDP for ✏n and the definition of the level set. All in all:

lim sup
n⇣•

⇤�1
n ln

- (

X

d✏n(y) e⇤n J(y)
.
⌦ max

�
max

1⌦i⌦k(M)
J(xi)� I(xi)+ 2⌥ ; sup

xX
J(x)�M

✏
.

The innermost maximum is bounded by the supremum of J(x)� I(x) when
x runs over X, and then in the limit M ⇣ +•:

lim sup
n⇣•

⇤�1
n ln

- (

X

d✏n(y) e⇤n J(y)
.
⌦ sup

xX

⇧
J(x)� I(x)

⌃
.

Consequently, ⇤�1
n ✏n[e⇤n J ] has a limit given by supxX

⇧
J(x)� I(x)

⌃
.

10.4 Large deviations of the empirical measure

We consider the ⌅ ensemble:

dµN(�1, . . . ,�N) =
1

ZN

N

’
i=1

d�i e�N(⌅/2)V(�i) ’
1⌦i<j⌦N

|�i � �j|⌅ ,

with a potential V which is continuous and confining (Equation (76)). This is
a probability measure on RN , that can be rewritten:

dµN(�1, . . . ,�N) =
1

ZN

N

’
i=1

d�i e�(⌅/2)V(�i) exp
⌦
� ⌅N2

2

((

x �=y

E(x, y)dL(�)
N (x)dL(�)

N (y)
↵

,

with:
E(x, y) = � ln |x� y|+ 1

2
�
V(x) + V(y)

⇥
.
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10. Beta ensembles and potential theory

Notice the absence of the factor N in e�(⌅/2)V(x). It is due to the fact that
the integral of V(x)dL(�)

N (x)dL(�)
N (y) avoiding the diagonal x = y produces

(N�1)
N2 ÂN

i=1 V(�i). We denote PN the probability measure on X = M1(R),
which is the direct image of the probability measure µn on Rn, by the map:

(88)
Rn �⇣ M1(R)

(�1, . . . ,�n) ��⇣ L(�)
N = 1

N ÂN
i=1 ⌃�i .

In practice, it means that the probability of a measurable subset A  M1(R)
is computed by the formula:

PN [A] =
(

{�RN : L(�)
N A}

dµN(�1, . . . ,�N) .

We have introduced in Chapter 10 the energy functional:

E(µ) =
((

E(x, y)dµ(x)dµ(y)  R ⇡ {+•} ,

and we have shown that it is lower semi-continuous, has compact level sets,
and admits a unique minimizer µeq. Therefore:

(89) I(µ) :=
⌅

2
⇤
E(µ)� E(µeq)

⌅
 [0,+•]

is a good rate function on M1(R). The main results we shall prove are:

10.12 theorem. We have:

lim
N⇣•

ln ZN
N2 = � ⌅

2
E(µeq) .

10.13 theorem. (PN)N↵1 satisfies a LDP with speed N2 and good rate function I
given by (89).

10.14 corollary. The empirical measure L(�)
N – which is a M1(R) random vari-

able with law given by PN – converges almost surely (for the weak topology) to the
equilibrium measure µeq.

Proof. (of the Corollary) It is enough to prove that, for any ⌥ > 0, the series
ÂN↵1 PN [d(LN , µeq) ↵ ⌥] converges. d is the Vasershtein distance, see Chap-
ter 0. But the upper bound in the LDP implies, for N large enough:

PN ⌦ e�N2c(⌥), c(⌥) =
1
2

inf
d(µ,µeq)↵⌥

E(µ) .

Since the minimizer of E is unique, c(⌥) is positive, so the series converges.

For the Gaussian ensembles, µeq is the semi-circle law and we retrieve
Wigner theorem for ⌅ = 1, 2, 4. We actually obtain here a stronger version of
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10.4. Large deviations of the empirical measure

Wigner theorem, because it ensures almost sure convergence – and not only
convergence in expectation.

Theorem 10.12 will be a side consequence of the proof of Theorem 10.13.
As explained in § 10.3, we will prove exponential tightness, and estimate the
probability of small balls to prove the LDP. We denote PN = ZN · PN the
measure on M1(R) of total mass ZN .

Exponential tightness

Our candidate is KM =
⇧

µ  M1(R),
&
|V(x)|dLN(x) ⌦ M

⌃
. First of all,

since V is proper, KM is indeed compact. And, since V is confining, there exist
c > 0 and c◆  R such that:

E(x, y) ↵ c
�
|V(x)|+ |V(y)|

⇥
+ c◆ .

Therefore:

PN [Kc
M] ⌦ 1

ZN

(

Kc
M

exp
-
� ⌅N2

�
c
(

|V(x)|dLN(x) + c◆/2
 .
⌦ e�⌅N2(cM+c◆/2)

ZN
.

To conclude, we need a rough lower bound on the partition function. It can be
obtained for instance by using Jensen inequality with respect to the probability
measure:

(90) d✏N(�1, . . . ,�N) :=
N

’
i=1

d�i e�(⌅/2)V(�i)

m
, m :=

(

R

dx e�(⌅/2)V(x) .

It indeed gives:

ln
� ZN

mN

 
↵ � ⌅N2

2

(

RN

d✏N(�1, . . . ,�N)
(

x �=y

dL(�)
N (x)dL(�)

N (y) E(x, y) ↵ �CN2

for some finite constant C since the logarithmic singularity is integrated against
the Lebesgue continuous measure d✏N . Thus:

lim sup
N⇣•

N�2 ln PN [Kc
M] ⌦ C� ⌅(cM + c◆/2) ,

and:
lim

M⇣•
lim sup

N⇣•
N�2 ln PN [Kc

M] = �• .

Upper bound for probability of small balls

If M > 0, we denote EM := min(E, M), so that we always have EM ⌦ E,
and the functional EM(✏) :=

&&
EM(x, y)d✏(x)d✏(y) is continuous. We can
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10. Beta ensembles and potential theory

estimate:

PN [B(✏, ⌥)] ⌦
(

d(L(�)
N ,✏)⌦⌥

e�N2(⌅/2)EM(L(�)
N )

N

’
i=1

e�(⌅/2)V(�i)d�i .

Since EM is regular on the diagonal, the functional is continuous. Repeating
the steps of the proof of Varadhan lemma (Lemma 10.11), one can prove for
any fixed M:

lim
N⇣•

N�2 ln
⌦ (

d(L(�)
N ,✏)⌦⌥

e�N2(⌅/2)EM(L(�)
N )

N

’
i=1

e�(⌅/2)V(�i)d�i

↵
= � inf

d(✏◆ ,✏)⌦⌥
EM(✏◆) .

Since EM is continuous, we can take the limit ⌥⇣ 0:

lim
⌥⇣0

lim sup
N⇣•

N�2 ln PN [B(✏, ⌥)] ⌦ �EM(✏) .

We can then take the limit M ⇣ • in the right-hand side by monotone con-
vergence. Hence:

lim sup
N⇣•

N�2 ln PN [B(✏, ⌥)] ⌦ � inf
d(✏◆ ,✏)⌦⌥

(⌅/2)E(✏◆) .

Similarly, if we integrate not over the ball of radius ⌥ but over all the space
M1(R):

(91) lim sup
N⇣•

N�2 ln ZN ⌦ � inf
✏◆M1(R)

(⌅/2)E(✏◆) = �(⌅/2)E(µeq) .

Lower bound for probability of small balls

We want to prove that, for all ✏ M1(R):

(92) lim
⌥⇣0

lim inf
N⇣•

N�2 ln PN [B(✏, ⌥)] ↵ �E(✏) .

We can assume that ✏ is such that E(✏) < +•, otherwise the inequality holds
trivially. This means in particular that ✏ has no atoms. One can also assume
that ✏ has compact support, since the result for general ✏ can be deduced by
approximation.

We define the semiclassical positions of ✏ as �N;i for i  J1, NK:

�N;i = inf
1

x  R, ✏
�
]�•, x]

⇥
↵ i

N + 1

2
.

We remark that, since ✏ is assumed to have compact support, �N;i all belong
to a compact K that is independent of i and N.
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10.4. Large deviations of the empirical measure

By approximation of the integral, for any ⌥ > 0, there exists N⌥ such that:

⌫N ↵ N⌥, d
�
✏̃N , ✏

 
<

⌥

2
, ✏̃N =

1
N

N

Â
i=1

⌃�N;i ,

and this implies:
⌫N ↵ N⌥, B(✏̃N , ⌥/2)  B(✏, ⌥) .

Further, let:

LN,⌥ :=
⇧
�  RN , 0 ⌦ �1 < . . . < �N ⌦ ⌥/2

⌃
.

Reminding that the Vasershtein distance is the supremum over a class of 1-
Lipschitz functions, we have:

(93)
⇧

µ M1(R), ⇠�  LN,⌥, µ = L(�)
N
⌃
 B(✏̃N , ⌥/2).

We then integrate on the smaller event to write a lower bound:

lim
⌥⇣0

lim inf
N⇣•

N�2 ln PN [B(✏, ⌥)] ↵ lim
⌥⇣0

lim inf
N⇣•

N�2 ln ZN,⌥(✏)

with:

ZN,⌥(✏) :=
(

0⌦x1<...<xN⌦⌥/2

N

’
i=1

dxi e�N(⌅/2)V(�N;i+xi) ’
1⌦i<j⌦N

|�N;i� �N;j + xi� xj|⌅ .

Since both �N;i and xi are increasing with i, the interaction term always satis-
fies the lower bound:

|�N;i � �N;j + xi � xj| ↵ |�N;i � �N;j|
↵ |xi � xj|
↵ |�N;i � �N;j|1/2 · |xi � xj|1/2 .

It is convenient, as we will see later in the proof of Lemma 10.4, to use the
third bound for nearest neighbors (i.e. i + 1 = j), and the first bound for all
other pairs {i, j}. Our lower bound for the integral splits into:

(94) ZN,⌥(✏) ↵ Z(int)
N,⌥ (✏) · Z(0)

N (✏) ,

with:

Z(int)
N,⌥ (✏) =

(

0⌦x1<...<xN⌦⌥/2

N�1

’
i=1

|xi+1 � xi|⌅/2
N

’
i=1

e�N(⌅/2)(V(�N;i+xi)�V(�N;i))dxi

Z(0)
N (✏) = ’

1⌦i<j⌦N�1
|�N;i � �N;j+1|⌅

N�1

’
i=1

|�N;i � �N;i+1|⌅/2
N

’
i=1

e�N(⌅/2)V(�N;i) .

We recognize in the last factor an approximation to the answer we look for:
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10.15 lemma.
lim inf

N⇣•
N�2 ln Z(0)

N (✏) ↵ �E(✏) .

Proof. It follows from the definition of the semiclassical positions that:

�N;i+1(

�N;i

�N;j+1(

�N;j

d✏(x)d✏(y)1x<y =

 1
(N+1)2 if i < j

1
2(N+1)2 if i = j

.

Therefore, we can write:

ln Z(0)
N (✏) = ⌅(N + 1)2 Â

1⌦i⌦j⌦N�1
ln(�N;j+1 � �N;i)

�N;i+1(

�N;i

�N;j+1(

�N;j

d✏(x)d✏(y)1x<y

�N2(⌅/2)
(

V(x)d✏̃N(x)

↵ ⌅(N + 1)2
((

[�N;1,�N;N ]2

1x<y d✏(x)d✏(y)� N2(⌅/2)
(

V(x)d✏̃N(x) .

We clearly have:

lim
N⇣•

((

[�N;1,�N;N ]2

ln |x� y| 1x<y d✏(x)d✏(y) = �1
2

((
ln |x� y|d✏(x)d✏(y) .

Since ✏̃N converges to ✏ and V is continuous hence bounded on the compact
K uniformly containing the support of ✏̃N and ✏, we have for the second term:

lim
N⇣•

V(x)d✏̃N(x) =
(

V(x)d✏(x) .

Therefore, we conclude that:

lim inf
N⇣•

Z(0)
N (✏) ↵ ⌅

2

� ((
ln |x� y|d✏(x)d✏(y)�

(
V(x)d✏(x)

 
= �(⌅/2)E(✏) .

It remains to show that the second factor in (94) leads does not spoil the
lower bound:

10.16 lemma.
lim
⌥⇣0

lim inf
N⇣•

N�2 ln Z(int)
N,⌥ (✏) ↵ 0 .

Proof. We first observe that, since �N;i belongs to the compact K and V is
uniformly continuous on K:

lim sup
N⇣•

sup
|x|⌦⌥/2
1⌦i⌦N

⌥⌥V(�N;i + x)�V(�N;i)
⌥⌥ = c(⌥) ,
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10.4. Large deviations of the empirical measure

with c(⌥)⇣ 0 when ⌥⇣ 0. Then, we use the change of variables:

y1 = x1, yi = xi � xi�1, i  J2, NK .

For a lower bound, we can restrict the integration to the domain yi  [0, ⌥/2N]:

lim inf
N⇣•

N�2 ln Z(int)
N,⌥ (✏) ↵ �(⌅/2)c(⌥)+ lim inf

N⇣•
N�2 ln

⌦ (

[0,⌥/2N]N

dy1

n

’
i=2

y⌅/2
i dyi

↵
.

The integral can be explicitly computed and is O(ec◆N ln N), does not contribute
to the limit. We conclude by sending ⌥ to 0.

Putting the two lemmas together, we have proved (92). We remark further
that we also get a lower bound for the partition function. Indeed, for any
✏ M1(R), we can write a trivial lower bound

(95)
lim inf

N⇣•
N�2 ln ZN ↵ lim inf

⌥⇣0
lim inf

N⇣•
N�2 ln PN [B(µeq, ⌥)] ↵ �(⌅/2)E(µeq) ,

and the last inequality is the result we just proved.

Conclusion

For the partition function: we have obtained identical upper bound (91) and
lower bound (95), so we deduce Theorem 10.12:

lim
N⇣•

N�2 ln ZN = �(⌅/2)E(µeq) .

For the probability of small balls, we have obtained identical upper bound for
the limsup and lower bound for the liminf, so the two limits must be equal:

�(⌅/2)E(µ) = lim
⌥⇣0

lim inf
N⇣•

N�2 ln PN [B(✏, ⌥)] = lim
⌥⇣0

lim sup
N⇣•

N�2 ln PN [B(✏, ⌥)] .

Hence, we can come back to the normalized measure PN = Z�1
N PN using our

result for the partition function:

�I(µ) = lim
⌥⇣0

lim inf
N⇣•

N�2 ln PN [B(✏, ⌥)] = lim
⌥⇣0

lim sup
N⇣•

N�2 ln PN [B(✏, ⌥)]

with the good rate function:

I(µ) = (⌅/2)
⇤
E(µ)� E(µeq)

⌅
.

According to Lemma 10.10, this implies a weak LDP for (PN)N↵1. Thanks the
exponential tightness – established in § 10.4 – and Lemma 10.9, it is upgraded
to an LDP, and we obtain Theorem 10.13.
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11. Schwinger-Dyson equations

11 Schwinger-Dyson equations

Lecture 19 (1h30)
January 19th, 2015 We consider again the ⌅ ensembles with confining potential V, that we fur-

thermore assume C1. The partition function and the correlation functions are
expressed as integrals over RN . Performing a change of variable does not
change the integral. We can exploit this freedom to derive exact relations be-
tween expectation values of various observables in the model. These are called
the Schwinger-Dyson equations, or also Ward identities, loop equations, Pas-
tur equations. In the context of matrix models, they were first written down
by Migdal.

11.1 Derivation of the first Schwinger-Dyson equation

For instance, if f is any diffeomorphism of R to itself, we have:

ZN =
(

RN

N

’
i=1

d�i e�N(⌅/2)V(�i) ’
1⌦i<j⌦N

|�i � �j|⌅

=
(

RN

N

’
i=1

d�i f ◆(�i) e�N(⌅/2)V( f (�i)) ’
1⌦i<j⌦N

| f (�i)� f (�j)|⌅ .(96)

Let h : R ⇣ R be a C1 function such that h and h◆ are bounded on R. Then,
ft(x) = x + th(x) is a diffeomorphism of R for t small enough. The invariance
of the integral under this differentiable family of change of variables implies
that the coefficient of t in (96) with f = ft vanishes. To compute it, we remark:

⇡t=0

�dµN( ft(�1), . . . , ft(�N))
dµN(�1, . . . ,�N)

 

=
N

Â
i=1

�
h◆(�i)� N(⌅/2)V◆(�i) h(�i)

 
+ Â

1⌦i<j⌦N
⌅

h(�i)� h(�j)

�i � �j
,

where dµN is the usual measure of the ⌅ ensemble. So, the vanishing of the
coefficient of O(t) after integration can be written as:

E

� N

Â
i=1

�
h◆(�i)� N(⌅/2)V◆(�i)h(�i)

 
+ Â

1⌦i<j⌦N
⌅

h(�i)� h(�j)

�i � �j

�
= 0 .

(97)

Equivalently, we can symmetrize the sum over (i, j) in (97), and add and
subtract the diagonal terms. Multiplying by 2/⌅, this yields:

E

�
(2/⌅� 1)

N

Â
i=1

h◆(�i)� N
N

Â
i=1

V◆(�i) h(�i) + Â
1⌦i,j⌦N

h(�i)� h(�j)

�i � �j

�
= 0 .

We remark that for the case of hermitian random matrices, ⌅ = 2 and the first
term disappears. The equation is then somewhat simpler because there is no
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derivative of h. The combination:

D[h](x, y) =
h(x)� h(y)

x� y
=

1(

0

h◆(xu + y(1� u))du

is called the non-commutative derivative of h.

11.2 Higher Schwinger-Dyson equations

If we remind the Definition 7.1 of the k-point density correlations ✓k|N , we
see that it gives a functional relation between ✓2|N and ✓1|N . The fact that
it involves statistics of pairs of eigenvalues is due to the pairwise interac-
tion contained in the Vandermonde. Writing down the first Schwinger-Dyson
equation for the model with potential V(t) = V � (2/⌅N)Âk

a=1 ta ha(x), and
picking up the coefficient of O(t1 · · · tk), we obtain the (k + 1)-th Schwinger-
Dyson equation

E

�1
(2/⌅� 1)

N

Â
i=1

h◆(�i)� N
N

Â
i=1

V◆(�i)h(�i)

+ Â
1⌦i<j⌦N

D[h](�i,�j)
2� k

’
a=1

N

Â
ia=1

h(�ia)
 

+
2
⌅

k

Â
a=1

N

Â
ia=1

h◆(�ia)
�

’
b �=a

N

Â
ib=1

h(�ib)
 �

= 0.

It is a functional relation involving ✓k+1|N , . . . , ✓1|N .
In general, the collection of k-th Schwinger-Dyson equations for k = 1, 2, . . .

do not allow to solve for the density correlations. Written in this form, they
do not close – we need to know ✓k+1|N to get ✓k|N for the k-th equation –
and actually they have many solutions. However, these equations can be used
effectively to establish asymptotic expansions of the partition function and
expectation values of various observables when N ⇣ •. And under certain
assumptions – for instance, a slightly stronger version of the one-cut property
– they do allow a recursive computation of the coefficients of these expansions.

11.3 Stieltjes transform of the equilibrium measure

Yet another way to rewrite the equation is in terms of the empirical measure:

E

�
2/⌅� 1

N

(
h◆(x)dL(�)

N (x)�
(

V◆(x)h(x)dL(�)
N (x)

+
((

D[h](x, y)dL(�)
N (x)dL(�)

N (y)
�
= 0.

This shows that the first term involving h◆ is negligible in front of the two last
terms when N ⇣ •. As a consequence of Corollary 10.14, LN converges to
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11. Schwinger-Dyson equations

µeq in expectation, so this equation gives in the large N limit:

(98)
(

V◆(x)h(x)dµeq(x) =
((

D[h](x, y)dµeq(x)dµeq(y) .

Since the Schwinger-Dyson equation is linear in h, it is also valid for h : R ⇣
C. For z  C \ R and outside the support of µeq, let us choose:

h(x) = hz(x) :=
1

z� x
.

It is indeed a bounded function with bounded derivative for x  R. We have:

D[hz](x, y) =
1

(z� x)(z� y)
.

So, in terms of the Stieltjes transform W(z) of µeq, we have:
((

D[hz](x, y)dµeq(x)dµeq(y) = W(z)2 .

For simplicity, let us assume that V is a polynomial. We then have:

(
V◆(x)hz(x)dµeq(x) = V◆(z)

(
hz(x)dµeq(x)�

( V◆(z)�V◆(x)
z� x

dµeq(x)

= V◆(z)W(z)� P(z) ,

and since (V◆(x)�V◆(z))/(x� z) is a polynomial, P is also a polynomial. By
continuity, we can actually put z on the real line and outside the support Seq
of µeq since W(z) is defined on C \ Seq.

11.1 lemma. If V is a polynomial, the Stieltjes transform of µeq satisfies the equation:

W2(z)�V◆(z)W(z) + P(z) = 0, P(z) :=
( V◆(z)�V◆(x)

z� x
dµeq(x).

Although the polynomial P is a priori unknown, this equation is very use-
ful to study µeq.

11.2 corollary. If V is a polynomial, W(z) is uniformly bounded when z  C \
Seq, and the limit:

lim
⌥⇣0+

W(x ± i0)

exist and are continuous functions of x. Besides, Seq is a finite union of segments, and
µeq is continuous with respect to Lebesgue measure.

Proof. The solution of the quadratic equation is:

W(z) =
V◆(z)�

3
V◆(z)2 � 4P(z)

2
.

Since P is a polynomial, we see that W(x) remains bounded in a compact
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11.3. Stieltjes transform of the equilibrium measure

neighborhood of Seq. Then, since W(x)  O(1/x) when x ⇣ •, W(x) is
uniformly bounded over C. The boundary values of W(x) only differ by the
sign given to the squareroot, and they are clearly continuous functions of x,
and the density of µeq is:

dµeq

dx
(x) =

3
4P(x)�V◆(x)2

2⇣
.

With this formula, we identify:

Seq =
⇧

x  R, 4P(x)�V◆(x)2 ↵ 0
⌃

.

Since 4P(x)�V◆(x)2 is a polynomial, this is a finite union of segments.
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